Compiling And Running GAMESS-US (1 May 2013(R1)) On 64-bit Ubuntu 12.X/13.X In SMP Mode

Author's Note 1: It is my standard policy to put too much info into guides so that those who are searching for specific problems they come across will find the offending text in their searches. With luck, your "build error" search sent you here.

Author's Note 2: It's not as bad as it looks (I've included lots of output and error messages for easy searching)!

Author's Note 3: I won't be much help for you in diagnosing your errors, but am happy to tweak the text below if something is unclear.

Conventions: I include both the commands you type in your Terminal and some of the output from these commands, the output being where most of the errors appear that I work on in the discussion.

Input is formatted as below:

username – your username (check your prompt)
machinename – your hostname (type hostname or check your prompt)

Text you put in at the (also shown, so you see the directory structure) prompt (copy + paste should be fine)

Text you get out (for checking results and reproducing errors)

Having just recently downloaded the newest version of GAMESS-US (R1 2013), my first few passes at using it under Linux (specifically, Ubuntu 12.04) ran into a few walls that required some straightforward modifications and a little bit of system prep planning. As my first few passes before successful execution are likely the same exact problems you might have run into in your attempts to get GAMESS-US to run (after a successful compilation and linking), I'm posting my problems and solutions here.

Qualifier 1 – My concern at the moment has been to get GAMESS-US to run under 64-bit Ubuntu 12.04 on a multi-core board (ye olde symmetric multiprocessing (which I always called single multi-processor, or SMP)). While some answers may follow in what's below, this post doesn't cover MPI-specific builds (nothing through a router, that is). SMP is the only concern (which is to say, I likely won't have good answers if you send along an MPI-specific question). Also, although I'm VERY interested in trying it, I've not yet attempted to build a GPU-capable version (but plan to in the near future).

Qualifier 2 – It is my standard policy to install apps into /opt, and my steps below will reflect that (specifically because there's a permission issue that needs to be addressed when you first try to build components). You can default to whatever you like, but keep in mind my tweaks when you try to build your local copy.

So, with the qualifiers in mind…

1. Prepping The System (apt-get)

There are few things better than being able to apt-get everything you need to prep your machine for an install, and I'm pleased to report that the (current) process for putting the important files onto Ubuntu 12.X/13.X is easy. Assuming you're not going the Intel / PGI / MKL route, you can do everything by installing gfortran (compiler, presently installing 4.4) and the blas and atlas math libraries.

username@machinename:~$ sudo apt-get install gfortran libblas-dev libatlas-base-dev

Note: your atlas libraries will be installed in /usr/lib64/atlas/ – this will matter when you run config.

After these finish, run the following to determine your installed gfortran version (will be asked for by the new GAMESS config)

username@machinename:~$ gfortran -dumpversion

GNU Fortran (Ubuntu 4.4.3-4ubuntu5.1) 4.4.3
Copyright (C) 2010 Free Software Foundation, Inc.

GNU Fortran comes with NO WARRANTY, to the extent permitted by law.
You may redistribute copies of GNU Fortran
under the terms of the GNU General Public License.
For more information about these matters, see the file named COPYING

4.4 And you're ready for GAMESS.

2. Downloading GAMESS-US, Placing Into /opt, And Changing Permissions

First, obviously, get the GAMESS source (click on the red text).

After downloading, copy/move gamess-current.tar.gz into /opt

username@machinename:~$ cd ~/Downloads
username@machinename:~/Downloads$ sudo cp gamess-current.tar.gz /opt
username@machinename:~/Downloads$ cd /opt
username@machinename:/opt$ sudo gunzip gamess-cuerent.tar.gz
username@machinename:/opt$ sudo tar xvd gamess-current.tar

gamess/
gamess/gms-files.csh
gamess/tools/

gamess/misc/count.code
gamess/misc/vbdum.src
gamess/Makefile.in

At this point, if you go through the config process and get to the point of building ddikick.x, you will get an error when you first try to run ./compddi

username@machinename:/opt/gamess/ddi$ sudo ./compddi >& compddi.log &

[1] 4622
-bash: compddi.log: Permission denied

The problem is with the permission of the entire gamess folder:

drwxr-xr-x  4 root        root              4096 2014-04-04 21:43 .
drwxr-xr-x 22 root        root              4096 2013-12-27 16:17 ..
drwxr-xr-x 14 1300 504              4096 2014-04-04 21:43 gamess
-rw-r–r– 1 root        root         198481920 2014-04-04 21:42 gamess-current.tar

Which you remedy before running into this error by changing the permissions:

username@machinename:/opt$ sudo chown -R username gamess

The next step is recommended when you run config, so I'm performing the step here to get it out of the way. With the atlas libraries installed, generate two symbolic links.

username@machinename:/opt$ cd /usr/lib64/atlas
username@machinename:/usr/lib64/atlas$ sudo ln -s libf77blas.so.3.0 libf77blas.so
username@machinename:/usr/lib64/atlas$ sudo ln -s libatlas.so.3.0 libatlas.so

And, at this point, you're ready to run the new (well, new to me) config script that preps your system install.

3. Building GAMESS-US

Back to the GAMESS-US folder.

username@machinename:/usr/lib64/atlas$ cd /opt/gamess
username@machinename:/opt/gamess$ sudo ./config

This script asks a few questions, depending on your computer system,
to set up compiler names, libraries, message passing libraries,
and so forth.

You can quit at any time by pressing control-C, and then .

Please open a second window by logging into your target machine,
in case this script asks you to 'type' a command to learn something
about your system software situation. All such extra questions will
use the word 'type' to indicate it is a command for the other window.

After the new window is open, please hit to go on.

You can open that second window or blindly assume that what I include below is all you need.

[enter]

GAMESS can compile on the following 32 bit or 64 bit machines:
axp64 – Alpha chip, native compiler, running Tru64 or Linux
cray-xt – Cray's massively parallel system, running CNL
hpux32 – HP PA-RISC chips (old models only), running HP-UX
hpux64 – HP Intel or PA-RISC chips, running HP-UX
ibm32 – IBM (old models only), running AIX
ibm64 – IBM, Power3 chip or newer, running AIX or Linux
ibm64-sp – IBM SP parallel system, running AIX
ibm-bg – IBM Blue Gene (P or L model), these are 32 bit systems
linux32 – Linux (any 32 bit distribution), for x86 (old systems only)
linux64 – Linux (any 64 bit distribution), for x86_64 or ia64 chips
AMD/Intel chip Linux machines are sold by many companies
mac32 – Apple Mac, any chip, running OS X 10.4 or older
mac64 – Apple Mac, any chip, running OS X 10.5 or newer
sgi32 – Silicon Graphics Inc., MIPS chip only, running Irix
sgi64 – Silicon Graphics Inc., MIPS chip only, running Irix
sun32 – Sun ultraSPARC chips (old models only), running Solaris
sun64 – Sun ultraSPARC or Opteron chips, running Solaris
win32 – Windows 32-bit (Windows XP, Vista, 7, Compute Cluster, HPC Edition)
win64 – Windows 64-bit (Windows XP, Vista, 7, Compute Cluster, HPC Edition)
winazure – Windows Azure Cloud Platform running Windows 64-bit
type 'uname -a' to partially clarify your computer's flavor.
please enter your target machine name:

We're doing a linux64 build, so type the following at the prompt:

linux64

Where is the GAMESS software on your system?
A typical response might be /u1/mike/gamess,
most probably the correct answer is /opt/gamess

GAMESS directory? [/opt/gamess]

Who is this mike and where is my folder u1? We'll get to that in rungms. For now, I'm installing in /opt, so the default directory is fine:

[enter]

Setting up GAMESS compile and link for GMS_TARGET=linux64
GAMESS software is located at GMS_PATH=/opt/gamess

Please provide the name of the build locaation.
This may be the same location as the GAMESS directory.

GAMESS build directory? [/opt/gamess]

Fine as selected.

[enter]

Please provide a version number for the GAMESS executable.
This will be used as the middle part of the binary's name,
for example: gamess.00.x

Version? [00]

Is this important? Maybe, if you plan on building multiple versions of GAMESS-US (you might want a GPU-friendly version, one with a different compiler, one with MPI, etc.). Number as you wish and remember the number when it comes to rungms. That said, the actual linking step seems to really want to produce a 01 version (we'll get to that). Meantime, default value is fine.

[enter]

Linux offers many choices for FORTRAN compilers, including the GNU
compiler set ('g77' in old versions of Linux, or 'gfortran' in
current versions), which are included for free in Unix distributions.

There are also commercial compilers, namely Intel's 'ifort',
Portland Group's 'pgfortran', and Pathscale's 'pathf90'. The last
two are not common, and aren't as well tested as the others.

type 'rpm -aq | grep gcc' to check on all GNU compilers, including gcc
type 'which gfortran' to look for GNU's gfortran (a very good choice),
type 'which g77' to look for GNU's g77,
type 'which ifort' to look for Intel's compiler,
type 'which pgfortran' to look for Portland Group's compiler,
type 'which pathf90' to look for Pathscale's compiler.
Please enter your choice of FORTRAN:

We're using gfortran (currently 4.4.3):

gfortran

gfortran is very robust, so this is a wise choice.

Please type 'gfortran -dumpversion' or else 'gfortran -v' to
detect the version number of your gfortran.
This reply should be a string with at least two decimal points,
such as 4.1.2 or 4.6.1, or maybe even 4.4.2-12.
The reply may be labeled as a 'gcc' version,
but it is really your gfortran version.
Please enter only the first decimal place, such as 4.1 or 4.6:

4.4

Alas, your version of gfortran does not support REAL*16,
so relativistic integrals cannot use quadruple precision.
Other than this, everything will work properly.
hit to continue to the math library setup.

If this was my biggest concern I'd be a happy quantum chemist. Obviously you can try to install other flavors of gfortran and, possibly, by the time you need the procedure I'm following, a newer version of gfortran will be apt-gotten.

[enter]

Linux distributions do not include a standard math library.

There are several reasonable add-on library choices,
MKL from Intel for 32 or 64 bit Linux (very fast)
ACML from AMD for 32 or 64 bit Linux (free)
ATLAS from www.rpmfind.net for 32 or 64 bit Linux (free)
and one very unreasonable option, namely 'none', which will use
some slow FORTRAN routines supplied with GAMESS. Choosing 'none'
will run MP2 jobs 2x slower, or CCSD(T) jobs 5x slower.

Some typical places (but not the only ones) to find math libraries are
Type 'ls /opt/intel/mkl' to look for MKL
Type 'ls /opt/intel/Compiler/mkl' to look for MKL
Type 'ls /opt/intel/composerxe/mkl' to look for MKL
Type 'ls -d /opt/acml*' to look for ACML
Type 'ls -d /usr/local/acml*' to look for ACML
Type 'ls /usr/lib64/atlas' to look for Atlas

Enter your choice of 'mkl' or 'atlas' or 'acml' or 'none':

atlas

Where is your Atlas math library installed? A likely place is
/usr/lib64/atlas
Please enter the Atlas subdirectory on your system:

Our location is, in fact, /usr/lib64/atlas, so we type it in accordingly.

NOTE: If you don't type anything but [enter] below, the script closes (/usr/lib64/atlas is listed as the expected location, but it is not defaulted by the script. You need to type it in.

/usr/lib64/atlas
 

The linking step in GAMESS assumes that a softlink exists
within the system's /usr/lib64/atlas
from libatlas.so to a specific file like libatlas.so.3.0
from libf77blas.so to a specific file like libf77blas.so.3.0
config can carry on for the moment, but the 'root' user should
chdir /usr/lib64/atlas
ln -s libf77blas.so.3.0 libf77blas.so
ln -s libatlas.so.3.0 libatlas.so
prior to the linking of GAMESS to a binary executable.

Math library 'atlas' will be taken from /usr/lib64/atlas

please hit to compile the GAMESS source code activator

The symbolic linking was performed before the GAMESS steps.

[enter]

gfortran -o /home/username/gamess/tools/actvte.x actvte.f
unset echo
Source code activator was successfully compiled.

please hit to set up your network for Linux clusters.

[enter]

If you have a slow network, like Gigabit Ethernet (GE), or
if you have so few nodes you won't run extensively in parallel, or
if you have no MPI library installed, or
if you want a fail-safe compile/link and easy execution,
choose 'sockets'
to use good old reliable standard TCP/IP networking.

If you have an expensive but fast network like Infiniband (IB), and
if you have an MPI library correctly installed,
choose 'mpi'.

communication library ('sockets' or 'mpi')?

Again, I'm not building an mpi-friendly version, so am using sockets.

sockets

64 bit Linux builds can attach a special LIBCCHEM code for fast
MP2 and CCSD(T) runs. The LIBCCHEM code can utilize nVIDIA GPUs,
through the CUDA libraries, if GPUs are available.
Usage of LIBCCHEM requires installation of HDF5 I/O software as well.
GAMESS+LIBCCHEM binaries are unable to run most of GAMESS computations,
and are a bit harder to create due to the additional CUDA/HDF5 software.
Therefore, the first time you run 'config', the best answer is 'no'!
If you decide to try LIBCCHEM later, just run this 'config' again.

Do you want to try LIBCCHEM? (yes/no):

no

Your configuration for GAMESS compilation is now in
/home/username/gamess/install.info
Now, please follow the directions in
/home/username/gamess/machines/readme.unix
username@machinename:~/gamess$

At this stage, you're ready to build ddikick.x and continue with the compiling.

4. Build ddikick.x

username@machinename:/opt/gamess$ cd ddi
username@machinename:/opt/gamess/ddi$ sudo ./compddi >& compddi.log &

Will dump output into compddi.log (which will now work with the correct permissions).

username@machinename:/opt/gamess/ddi$ sudo mv ddikick.x ..
username@machinename:/opt/gamess/ddi$ cd ..
username@machinename:/opt/gamess$ sudo ./compall >& compall.log &

Feel free to follow along as compall.log dumps results. You're also welcome to follow the readme.unix advice:

This takes a while, so go for coffee, or check the SF Giants web page.

Upon completion, the last step is to link the executable.

Now, it used to be the case that you specified the version number in the lked step. So, if you wanted to stick with the 00 version from the config file, you'd type

username@machinename:/opt/gamess$ sudo ./lked gamess 00 >& lked.log &

When you do that at present, you get

[1] 7626
username@machinename:/opt/gamess$

[1]+ Stopped sudo ./lked gamess 00 &>lked.log

This then leads you to use the lked call from the readme.unix file.

username@machinename:/opt/gamess$ sudo ./lked gamess 01 >& lked.log &

Which then produces lked.log and gamess.01.x.

Now, if you run with 00 again, you get a successful linking of gamess.00.x . Not sure why this happens, but the version number isn't important so long as you specify the right one when you use rungms (so I've not diagnosed it further).

At this point, you have a gamess.00.x and/or gamess.01.x executable in your /opt/gamess folder:

30828747 2014-04-04 22:41 gamess.01.x

I'm going to ignore the 00 issue out of the config file and use the gamess.01.x executable.

We're ready to run calculations and work through the next set of errors you'll receive if you don't properly modify files.

5. PATH Setting

First, we copy rungms to our home folder, then add /opt/gamess to the PATH:

username@machinename:/opt/gamess$ cp rungms ~/
username@machinename:/opt/gamess$ cd ~/
username@machinename:~$ nano .bashrc

Add the following to the bottom of .bashrc (or extend your PATH)

PATH=$PATH:/opt/gamess

Quit nano and source.

username@machinename:~$ source .bashrc
[OPTIONAL] username@machinename:~$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:…/opt/gamess:

6. rungms (Probably Why You're Here)

If you just go blindly into a run, you'll get the following error:

username@machinename:~$ ./rungms test.inp

—– GAMESS execution script 'rungms' —–
This job is running on host machinename
under operating system Linux at Fri Apr 4 22:47:55 EDT 2014
Available scratch disk space (Kbyte units) at beginning of the job is
df: `/scr/username': No such file or directory
df: no file systems processed
GAMESS temporary binary files will be written to /scr/username
GAMESS supplementary output files will be written to /home/username/scr
Copying input file test.inp to your run's scratch directory…
cp test.inp /scr/username/test.F05
cp: cannot create regular file `/scr/username/test.F05': No such file or directory
unset echo
/u1/mike/gamess/gms-files.csh: No such file or directory.

As is obvious, rungms needs some modifying.

username@machinename:~$ nano rungms

Scroll down until you see the following:

set TARGET=sockets
set SCR=/scr/$USER
set USERSCR=~$USER/scr
set GMSPATH=/u1/mike/gamess

Given that it's just me on the machine, I tend to simplify this by making SCR and USERSCR the same directory, and I make them both /tmp. If you intend on keeping all of the files, you'll need to make rungms specific for each run case. My only concerns are .dat and .log, so /tmp dumping is fine. Furthermore, we must change GMSPATH from how the ever-helpful Mike Schmidt (he got me through some early issues when I started my GAMESS-US adventure 15ish years ago. Won't complain about his continued default-ed presence in the scripts) has it set up at Iowa to how we want it on our own machines (in my case, /opt/gamess)

set TARGET=sockets
set SCR=/tmp
set USERSCR=/tmp
set GMSPATH=/opt/gamess

With these modifications, your next run will be a bit more successful:

username@machinename:~$ ./rungms test.inp

—– GAMESS execution script 'rungms' —–
This job is running on host machinename
under operating system Linux at Fri Apr 4 22:51:35 EDT 2014
Available scratch disk space (Kbyte units) at beginning of the job is
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 1905222596 249225412 1559217460 14% /
GAMESS temporary binary files will be written to /tmp
GAMESS supplementary output files will be written to /tmp
Copying input file test.inp to your run's scratch directory…
cp test.inp /tmp/test.F05
unset echo
/opt/gamess/ddikick.x /opt/gamess/gamess.00.x test -ddi 1 1 machinename -scr /tmp

Distributed Data Interface kickoff program.
Initiating 1 compute processes on 1 nodes to run the following command:
/opt/gamess/gamess.00.x test

******************************************************
* GAMESS VERSION = 1 MAY 2013 (R1) *
* FROM IOWA STATE UNIVERSITY *
* M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT, *
* M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA, *
* K.A.NGUYEN, S.J.SU, T.L.WINDUS, *
* TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY *
* J.COMPUT.CHEM. 14, 1347-1363(1993) *
**************** 64 BIT LINUX VERSION ****************

INPUT CARD>
DDI Process 0: shmget returned an error.
Error EINVAL: Attempting to create 160525768 bytes of shared memory.
Check system limits on the size of SysV shared memory segments.

The file ~/gamess/ddi/readme.ddi contains information on how to display
the current SystemV memory settings, and how to increase their sizes.
Increasing the setting requires the root password, and usually a sytem reboot.

DDI Process 0: error code 911
ddikick.x: application process 0 quit unexpectedly.
ddikick.x: Fatal error detected.
The error is most likely to be in the application, so check for
input errors, disk space, memory needs, application bugs, etc.
ddikick.x will now clean up all processes, and exit…
ddikick.x: Sending kill signal to DDI processes.
ddikick.x: Execution terminated due to error(s).
unset echo
—– accounting info —–
Files used on the master node machinename were:
-rw-r–r– 1 username username 0 2014-04-04 22:51 /tmp/test.dat
-rw-r–r– 1 username username 1341 2014-04-04 22:51 /tmp/test.F05
ls: No match.
ls: No match.
ls: No match.
Fri Apr 4 22:51:36 EDT 2014
0.0u 0.0s 0:01.08 9.2% 0+0k 0+8io 0pf+0w

Things worked, but with a memory error. This issue is discussed at the Baldridge Group wiki: ocikbapps.uzh.ch/kbwiki/gamess_troubleshooting.html

From the wiki:

If you are sure you are not asking for too much memory in the input file, check that your kernel parameters are not allowing enough memory to be requested. You might have to increase the SHMALL & SHMAX kernel memory values to allow GAMESS to run. (See http://www.pythian.com/news/245/the-mysterious-world-of-shmmax-and-shmall/ for a better explanation.)
For example, on a machine with 4GB of memory, you might add these to /etc/sysctl.conf:
# cat /etc/sysctl.conf | grep shm
kernel.shmmax = 3064372224
kernel.shmall = 748137
Then set the new settings like so:
# sysctl -p
Since they are in /etc/sysctl.conf, they will automatically be set each time the system is booted.

In our case, we modify sysctl.conf with the recommendations from the wiki:

username@machinename:~$ sudo nano /etc/sysctl.conf

Add the following to the bottom of the file:

kernel.shmmax = 3064372224
kernel.shmall = 748137

Save and exit.

username@machinename:~$ sudo sysctl -p

net.ipv4.ip_forward = 1
kernel.shmmax = 3064372224
kernel.shmall = 748137

These memory values will change depending on your system.

Now we empty the /tmp and rerun.

username@machinename:~$ rm /tmp/*
username@machinename:~$ ./rungms test.inp

If your input file is worth it's salt, you'll have successfully run your file on a single processor (single core, that is). If you run into additional memory errors, increase kernel.shmmax and kernel.shmall.

Now, onto the SMP part. My first attempt to run games in parallel (on 4 cores using version 00) produced the following error:

username@machinename:~$ rm /tmp/*
username@machinename:~$ ./rungms test.inp 00 4

—– GAMESS execution script 'rungms' —–
This job is running on host machinename
under operating system Linux at Fri Apr 4 22:52:52 EDT 2014
Available scratch disk space (Kbyte units) at beginning of the job is
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 1905222596 249225416 1559217456 14% /
GAMESS temporary binary files will be written to /tmp
GAMESS supplementary output files will be written to /tmp
Copying input file test.inp to your run's scratch directory…
cp test.inp /tmp/test.F05
unset echo
I do not know how to run this node in parallel.

I tried a number of stupid things to get the run to work, finally settling on modifying the rungms file properly. To make gamess know how to run the node in parallel, we need only make the following changes to our rungms file.

username@machinename:~$ nano rungms

Scroll down until you find the section below:

# 2. This is an example of how to run on a multi-core SMP enclosure,
# where all CPUs (aka COREs) are inside a -single- NODE.
# At other locations, you may wish to consider some of the examples
# that follow below, after commenting out this ISU specific part.
if ($NCPUS > 1) then
switch (`hostname`)
case se.msg.chem.iastate.edu:
case sb.msg.chem.iastate.edu:
if ($NCPUS > 2) set NCPUS=4
set NNODES=1

The change is simple. We remove the cases for $NCPUS > 1 in the file and add the hostname of our linux box (and if you don't know this or it's not in your prompt, simply type hostname at the prompt first). We'll disable the two cases listed and add our hostname to the case list.

# 2. This is an example of how to run on a multi-core SMP enclosure,
# where all CPUs (aka COREs) are inside a -single- NODE.
# At other locations, you may wish to consider some of the examples
# that follow below, after commenting out this ISU specific part.
if ($NCPUS > 1) then
switch (`hostname`)
case machinename:
# case se.msg.chem.iastate.edu:
# case sb.msg.chem.iastate.edu:
if ($NCPUS > 2) set NCPUS=4
set NNODES=1

This gives you parallel functionality, but it's still not using the machine resources (cores) correctly when I ask for anything more than 2 cores (always using only 2 cores).

[minor complaint]
Admittedly, I don't immediately get the logic of this section as currently coded, as one cannot get more than 2 cores to work in this case given how the if statements are written (so far as I can see now. I will assume I am the one missing something but have not decided to ask about it, instead changing the rungms text to the following). You can check this yourself by running top in another window. This is the most simple modification, and assumes you want to run N number of cores each time. Clearly, you can make this more elegant than it is (my modification, that is). Meantime, I want to run 4 cores on this machine, so I change the section to reflect a 4-core board (and commented out much of this section).
[/complaint]

# 2. This is an example of how to run on a multi-core SMP enclosure,
# where all CPUs (aka COREs) are inside a -single- NODE.
# At other locations, you may wish to consider some of the examples
# that follow below, after commenting out this ISU specific part.
if ($NCPUS > 1) then
switch (`hostname`)
case machinename
# case se.msg.chem.iastate.edu:
# case sb.msg.chem.iastate.edu:
# if ($NCPUS > 2) set NCPUS=2
# set NNODES=1
# set HOSTLIST=(`hostname`:cpus=$NCPUS)
# breaksw
# case machinename
# case br.msg.chem.iastate.edu:
if ($NCPUS >= 4) set NCPUS=4
set NNODES=1
set HOSTLIST=(`hostname`:cpus=$NCPUS)
breaksw
case machinename
# case cd.msg.chem.iastate.edu:
# case zn.msg.chem.iastate.edu:
# case ni.msg.chem.iastate.edu:
# case co.msg.chem.iastate.edu:
# case pb.msg.chem.iastate.edu:
# case bi.msg.chem.iastate.edu:
# case po.msg.chem.iastate.edu:
# case at.msg.chem.iastate.edu:
# case sc.msg.chem.iastate.edu:
# if ($NCPUS > 4) set NCPUS=4
# set NNODES=1
# set HOSTLIST=(`hostname`:cpus=$NCPUS)
# breaksw
# case ga.msg.chem.iastate.edu:
# case ge.msg.chem.iastate.edu:
# case gd.msg.chem.iastate.edu:
# if ($NCPUS > 6) set NCPUS=6
# set NNODES=1
# set HOSTLIST=(`hostname`:cpus=$NCPUS)
# breaksw
default:
echo I do not know how to run this node in parallel.
exit 20
endsw
endif
#

And, with this set of changes, I'm using all 4 cores on the board (but have some significant memory issues when running MP2 calks. But that's for another post).

The typical user will never be able to do what the GAMESS group has done in making an excellent program that also happens to be free. That said, the need to make changes to the rungms file is something that would be greatly simplified by having N number of rungms scripts for each case instead of a monolithic file that is mostly useless text to users not using one of the system types. This, for instance, would make rungms modification much easier. If I streamline rungms for my specific system, I may post a new file accordingly.

Abinit 6.8.1 In Parallel With OpenMPI 1.4.1 In Ubuntu 10.04.2 LTS (And Related)

It has been a banner week for Ubuntu installations.

The installation of Abinit 5.6.5 with OpenMPI 1.3.1 (previously reported at www.somewhereville.com/?p=384) wasn't bad, but several games had to be played (at the time) to make everything compile and run correctly. I'm pleased to report that Abinit 6.8.1 and OpenMPI 1.4.1 seem to play better together, this simplified considerably over the previous installation guide by the use of the apt-get version of OpenMPI 1.4.1. A bit of option calling in the configure step is needed (and the errors for not doing it are included below).

0. For the Antsy Copy+Paste Crowd

Commands below.

sudo apt-get install autoconf bison build-essential cmake csh doxygen flex fort77 freeglut3-dev g++ g++-multilib gcc gcc-multilib gettext gfortran gnuplot ia32-libs lib32asound2 lib32gcc1 lib32gcc1-dbg lib32gfortran3 lib32gomp1 lib32mudflap0 lib32ncurses5 lib32nss-mdns lib32z1 libavdevice52 libblas3gf libbz2-dev libc6-dev-i386 libc6-i386 libfreeimage-dev libglew1.5-dev liblapack3gf libnetcdf-dev libopenal1 libopenexr-dev libopenmpi-dev libpng12-dev libqt4-dev libssl-dev libstdc++6-4.3-dbg libstdc++6-4.3-dev libstdc++6-4.3-doc libxext-dev libxi-dev libxml-simple-perl libxmu-dev libxt-dev mercurial netcdf-bin nfs-common nfs-kernel-server openmpi-bin patch portmap python2.6-dev rpm ssh tcsh xorg-dev zlib1g-dev libblas-doc libblas-dev liblapack-doc liblapack-dev

sudo aptitude update

sudo aptitude upgrade

sudo shutdown -r now

pico .profile

INSERT: LD_LIBRARY_PATH="/usr/lib64/openmpi/lib/"

source .profile

gunzip abinit-6.8.1.tar.gz 

tar xvf abinit-6.8.1.tar 

cd abinit-6.8.1/

./configure --enable-mpi --with-mpi-level=2 FC=mpif90 --with-linalg-libs="-llapack -lblas"

make mj4

sudo make install

For the "why?" crowd, a bit more about the steps is provided below.

1. apt-get Installs

As has been standard procedure for all of my posts like this, I blindly install a "core set" of things I've needed for various other build processes and am largely uninterested in identifying specific things needed by each program I build (hard drives are cheap). This list below includes plenty you likely don't need for Abinit installations. Feel free to send me a shortened list if you diagnose it.

The list below includes the OpenMPI installation and all of the build tools needed by Abinit. I finish the installation with an aptitude update/upgrade (which one can skip). If you're using a 32-bit version of Ubuntu, you'll get plenty of errors about not being able to find various lib32 files. Simply delete the "lib32___" stuff.

user@machine:~/abinit-6.8.1$ sudo apt-get install autoconf bison build-essential cmake csh doxygen flex fort77 freeglut3-dev g++ g++-multilib gcc gcc-multilib gettext gfortran gnuplot ia32-libs lib32asound2 lib32gcc1 lib32gcc1-dbg lib32gfortran3 lib32gomp1 lib32mudflap0 lib32ncurses5 lib32nss-mdns lib32z1 libavdevice52 libblas3gf libbz2-dev libc6-dev-i386 libc6-i386 libfreeimage-dev libglew1.5-dev liblapack3gf libnetcdf-dev libopenal1 libopenexr-dev libopenmpi-dev libpng12-dev libqt4-dev libssl-dev libstdc++6-4.3-dbg libstdc++6-4.3-dev libstdc++6-4.3-doc libxext-dev libxi-dev libxml-simple-perl libxmu-dev libxt-dev mercurial netcdf-bin nfs-common nfs-kernel-server openmpi-bin patch portmap python2.6-dev rpm ssh tcsh xorg-dev zlib1g-dev libblas-doc libblas-dev liblapack-doc liblapack-dev
user@machine:~$ sudo aptitude update
user@machine:~$ sudo aptitude upgrade
user@machine:~$ sudo shutdown -r now

2. LD_LIBRARY_PATH Addition To .profile

If you're using a 32-bit Ubuntu install, change the "lib64" to simply "lib".

user@machine:~$ pico .profile

Copy and paste the following into your .profile.

LD_LIBRARY_PATH="/usr/lib64/openmpi/lib/"

Crtl-X and Yes.

user@machine:~$ source .profile

3. Installing Abinit 6.8.1

And the fun begins.

user@machine:~$ gunzip abinit-6.8.1.tar.gz 
user@machine:~$ tar xvf abinit-6.8.1.tar 
user@machine:~$ cd abinit-6.8.1/

NOTE: I performed several problematic trials before a successful parallel installation. If you saw the following from previous attempts…

configure: creating ./config.status
config.status: error: cannot find input file: `config.dump.in'

… don't diagnose, just delete the current directory and re-extract a fresh copy of the abinit source.

My first simple ./configure run produced the following output:

DO NOT USE: user@machine:~/abinit-6.8.1$ ./configure

...

Summary of important options:

  * C compiler      : gnu version 4.4
  * Fortran compiler: gnu version 4.4
  * architecture    : unknown unknown (64 bits)

  * debugging       : basic
  * optimizations   : standard

  * MPI    enabled  : no
  * MPI-IO enabled  : no
  * GPU    enabled  : no (none)

  * TRIO   flavor = netcdf+etsf_io-fallback
  * TIMER  flavor = abinit (libs: ignored)
  * LINALG flavor = netlib-fallback (libs: internal)
  * FFT    flavor = none (libs: ignored)
  * MATH   flavor = none (libs: ignored)
  * DFT    flavor = libxc-fallback+atompaw-fallback+bigdft-fallback+wannier90-fallback

Configuration complete.
You may now type "make" to build ABINIT.
(or, on a SMP machine, "make mj4", or "make multi multi_nprocs=")

Note the lack of MPI-enabling. Changing the options in configure to announce-enable MPI and specify the compiler location…

DO NOT USE: user@machine:~/abinit-6.8.1$ ./configure --enable-mpi --with-mpi-prefix="/usr/bin"
 
Summary of important options:

  * C compiler      : gnu version 4.4
  * Fortran compiler: gnu version 4.4
  * architecture    : unknown unknown (64 bits)

  * debugging       : basic
  * optimizations   : standard

  * MPI    enabled  : yes
  * MPI-IO enabled  : yes
  * GPU    enabled  : no (none)

  * TRIO   flavor = netcdf+etsf_io-fallback
  * TIMER  flavor = abinit (libs: ignored)
  * LINALG flavor = netlib-fallback (libs: internal)
  * FFT    flavor = none (libs: ignored)
  * MATH   flavor = none (libs: ignored)
  * DFT    flavor = libxc-fallback+atompaw-fallback+bigdft-fallback+wannier90-fallback

Configuration complete.
You may now type "make" to build ABINIT.
(or, on a SMP machine, "make mj4", or "make multi multi_nprocs=")

… did show MPI enabled.

The thrill of ./configure victory was short-lived. My first attempt to make ended as follows:

DO NOT USE: user@machine:~/abinit-6.8.1$ make mj4

...

Error: Symbol 'xmpi_offset_kind' at (1) has no IMPLICIT type
m_xmpi.F90:1875.25:

 integer(XMPI_OFFSET_KIND),intent(inout) :: offset
                         1
Error: Symbol 'xmpi_offset_kind' at (1) has no IMPLICIT type
m_xmpi.F90:2002.25:

 integer(XMPI_OFFSET_KIND),intent(out) :: my_offpad
                         1
Error: Symbol 'xmpi_offset_kind' at (1) has no IMPLICIT type
m_xmpi.F90:2244.25:

 integer(XMPI_OFFSET_KIND),intent(in) :: offset
                         1
Error: Symbol 'xmpi_offset_kind' at (1) has no IMPLICIT type
Fatal Error: Error count reached limit of 25.
make[5]: *** [m_xmpi.o] Error 1
make[5]: Leaving directory `/home/user/abinit-6.8.1/src/12_hide_mpi'
make[4]: *** [all-recursive] Error 1
make[4]: Leaving directory `/home/user/abinit-6.8.1/src'
make[3]: *** [all-recursive] Error 1
make[3]: Leaving directory `/home/user/abinit-6.8.1'
make[2]: *** [all] Error 2
make[2]: Leaving directory `/home/user/abinit-6.8.1'
make[1]: *** [multi] Error 2
make[1]: Leaving directory `/home/user/abinit-6.8.1'
make: *** [mj4] Error 2

As usual, I put the error here because you're likely searching against the same errors in your build attempts. Your first solution might be to try to force specify the fortran compiler (especially if you're familiar with the integer(XMPI_OFFSET_KIND) errors, which appeared to me at first blush to be something specific to the GNU fortran compiler choice). As the code's in f90, calling f77 won't do you much good…

DO NOT USE: user@machine:~/abinit-6.8.1$ ./configure --enable-mpi="yes" FC=f77

...

checking whether f77 accepts -g... yes
checking whether we are using the GNU Fortran 77 compiler... yes
checking whether f77 accepts -g... yes
configure: setting up Fortran 90
checking for Fortran flag to compile .f90 files... unknown
configure: error: Fortran could not compile .f90 files
make[3]: *** [configure-stamp] Error 1
make[3]: Leaving directory `/home/user/abinit-6.8.1/plugins/netcdf'
make[2]: *** [package-ready] Error 2
make[2]: Leaving directory `/home/user/abinit-6.8.1/plugins/netcdf'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/home/user/abinit-6.8.1/plugins'
make: *** [multi] Error 2

Specifying gfortran might be your next solution,

DO NOT USE: user@machine:~/abinit-6.8.1$ ./configure --enable-mpi="yes" FC=gfortran --with-mpi-prefix=1

...

configure: Initializing MPI support
configure: looking for MPI in 1
configure: error: use --with-mpi-prefix or set FC, not both

And you may reach your moment of clarity. Why are you calling the non-mpi fortran compiler? Right! The BLAS and LAPACK are late additions (may or may not improve run speed).

user@machine:~/abinit-6.8.1$ ./configure --enable-mpi --with-mpi-level=2 FC=mpif90 --with-linalg-libs="-llapack -lblas"

 ...

 ==============================================================================
 === Overall startup                                                        ===
 ==============================================================================

checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking target system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking whether make sets $(MAKE)... (cached) yes
checking whether ln -s works... yes
checking for a sed that does not truncate output... /bin/sed
checking for gawk... (cached) gawk
checking for grep that handles long lines and -e... /bin/grep
checking for egrep... /bin/grep -E
configure: not loading options (no config file available)

 ==============================================================================
 === Build-system information                                               ===
 ==============================================================================

configure: ABINIT version 6.8.1
configure: M4 010416 - Autoconf 026800 - Automake 011100 - Libtool 020204
configure: reporting user interface changes:

 ==============================================================================
 === Option consistency checking                                            ===
 ==============================================================================

configure: checking consistency of library-related options
configure:  |---> all OK
configure: 
configure: checking consistency of plug-in options
configure:  |---> all OK
configure: 
configure: checking consistency of experimental options
configure:  |---> all OK
configure: 
configure:  |---> all OK
configure: 
configure: parsing command-line options

 ==============================================================================
 === Connector startup                                                      ===
 ==============================================================================

configure: Initializing MPI support
checking for mpirun... mpirun
configure: WARNING: MPI runner mpirun may be incompatible with MPI compilers
configure: compiler checks deferred
configure: GPU support disabled from command-line

 ==============================================================================
 === Utilities                                                              ===
 ==============================================================================

checking for sh... /bin/sh
checking for mv... /bin/mv
checking for perl... /usr/bin/perl
checking for rm... /bin/rm
checking for dvips... dvips
checking for dvipdf... dvipdf
checking for latex... no
checking for markdown... no
checking for patch... patch
checking for ps2pdf... ps2pdf
checking for tar... tar
checking for wget... wget
checking for curl... no
configure: using internal version of MarkDown

 ==============================================================================
 === C support                                                              ===
 ==============================================================================

checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables... 
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking for style of include used by make... GNU
checking dependency style of gcc... gcc3
checking how to run the C preprocessor... gcc -E
checking which type of compiler we have... gnu 4.4
checking for ANSI C header files... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... yes
checking for unistd.h... yes
checking whether byte ordering is bigendian... no

 ==============================================================================
 === C++ support                                                            ===
 ==============================================================================

checking for g++... g++
checking whether we are using the GNU C++ compiler... yes
checking whether g++ accepts -g... yes
checking dependency style of g++... gcc3
checking which type of C++ compiler we have... gnu 4.4

 ==============================================================================
 === Fortran support                                                        ===
 ==============================================================================

checking for mpif90... /usr/bin/mpif90
checking whether we are using the GNU Fortran compiler... yes
checking whether mpif90 accepts -g... yes
checking which type of Fortran compiler we have... gnu 4.4
checking fortran 90 modules extension... mod
checking for Fortran flag to compile .F90 files... none
configure: determining Fortran module case
checking whether Fortran modules are upper-case... no
checking how to get verbose linking output from mpif90... -v
checking for Fortran libraries of mpif90...  -L/usr/lib/openmpi/lib -L/usr/lib/gcc/x86_64-linux-gnu/4.4.3 -L/usr/lib/gcc/x86_64-linux-gnu/4.4.3/https://www.somewhereville.com/https://www.somewhereville.com/lib -L/lib/../lib -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/4.4.3/https://www.somewhereville.com/.. -L/usr/lib/x86_64-linux-gnu -lmpi_f90 -lmpi_f77 -lmpi -lopen-rte -lopen-pal -ldl -lnsl -lutil -lgfortranbegin -lgfortran -lm -lpthread
checking for dummy main to link with Fortran libraries... none
checking for Fortran name-mangling scheme... lower case, underscore, no extra underscore

 ==============================================================================
 === Python support                                                         ===
 ==============================================================================

checking for python... python
checking for Python CPPFLAGS... -I/usr/include/python2.6
checking for bzr... no
checking for Python NumPy headers... not found
checking numarray/arrayobject.h usability... no
checking numarray/arrayobject.h presence... no
checking for numarray/arrayobject.h... no

 ==============================================================================
 === Libraries and linking                                                  ===
 ==============================================================================

checking for ar... ar
checking for ranlib... ranlib

 ==============================================================================
 === Hints                                                                  ===
 ==============================================================================

checking for cpp... cpp
checking for a true C preprocessor... cpp
checking which cpp hints to apply... default/default/default
checking which cc hints to apply... gnu/default/default
checking which xpp hints to apply... none/none/none
checking which cxx hints to apply... gnu/default/default
checking which fpp hints to apply... default/default/default
checking which fc hints to apply... gnu/default/default
checking which ar hints to apply... none/none/none
checking which Fortran preprocessor to use... 
checking which Fortran preprocessor flags to apply... 
checking whether to wrap Fortran compiler calls... no

 ==============================================================================
 === Debugging                                                              ===
 ==============================================================================

checking debugging status... enabled (profile mode: basic)
configure: setting C debug flags to '-g'
configure: setting C++ debug flags to '-g'
configure: setting Fortran debug flags to '-g'
checking whether to activate debug mode in source files... no
checking which cc debug flags to apply... gnu/default/default
checking which cxx debug flags to apply... none/none/none
checking which fc debug flags to apply... gnu/default/default
checking whether to activate design-by-contract debugging... no

 ==============================================================================
 === Optimizations                                                          ===
 ==============================================================================

checking optimization status... enabled (profile mode: standard)
checking which cc optimizations to apply... gnu/default/default
checking which cxx optimizations to apply... gnu/default/default
checking which fc optimizations to apply... gnu/default/default
checking whether to apply per-directory optimizations... yes

 ==============================================================================
 === 64-bit support                                                         ===
 ==============================================================================

checking for a 64-bit architecture... yes
checking whether to use 64-bit flags... no
checking for user-defined 64-bit flags... 

 ==============================================================================
 === Build flags                                                            ===
 ==============================================================================

configure: static builds may be performed

 ==============================================================================
 === Advanced compiler features                                             ===
 ==============================================================================

checking stddef.h usability... yes
checking stddef.h presence... yes
checking for stddef.h... yes
checking stdarg.h usability... yes
checking stdarg.h presence... yes
checking for stdarg.h... yes
checking stdio.h usability... yes
checking stdio.h presence... yes
checking for stdio.h... yes
checking malloc.h usability... yes
checking malloc.h presence... yes
checking for malloc.h... yes
checking math.h usability... yes
checking math.h presence... yes
checking for math.h... yes
checking termios.h usability... yes
checking termios.h presence... yes
checking for termios.h... yes
checking errno.h usability... yes
checking errno.h presence... yes
checking for errno.h... yes
checking mcheck.h usability... yes
checking mcheck.h presence... yes
checking for mcheck.h... yes
checking for abort... yes
checking size of char... 1
checking size of short... 2
checking size of int... 4
checking size of long... 8
checking size of long long... 8
checking size of unsigned int... 4
checking size of unsigned long... 8
checking size of unsigned long long... 8
checking size of float... 4
checking size of double... 8
checking size of long double... 16
checking size of size_t... 8
checking size of ptrdiff_t... 8
checking for an ANSI C-conforming const... yes
checking for size_t... yes
checking whether the Fortran compiler supports allocatable arrays in datatypes... yes
checking whether the Fortran compiler provides the iso_c_binding module... yes
checking whether the Fortran compiler accepts exit()... yes
checking whether the Fortran compiler accepts flush()... yes
checking whether the Fortran compiler accepts flush_()... no
checking whether the Fortran compiler accepts gamma()... yes
checking whether the Fortran compiler accepts getenv()... yes
checking whether the Fortran compiler accepts getpid()... no
checking whether the Fortran compiler accepts the null() intrinsic... yes
checking whether the Fortran compiler accepts quadruple integers... yes
checking whether the Fortran compiler accepts long lines... yes
checking whether the Fortran compiler supports stream IO... yes
checking whether the Fortran compiler accepts etime()... no
checking whether to use C clock for timings... no

 ==============================================================================
 === Connectors / Fallbacks                                                 ===
 ==============================================================================

checking whether the C compiler supports MPI... no
checking whether the C++ compiler supports MPI... no
checking whether the Fortran Compiler supports MPI... yes
checking whether MPI is usable... no
configure: WARNING: MPI support is broken!
configure: enabling MPI I/O support
checking whether to build MPI code... yes
checking whether to build MPI I/O code... yes
checking whether to build MPI time tracing code... no
checking which level of MPI is supported by the Fortran compiler... 2
configure: forcing MPI-2 standard support
checking whether the MPI library supports MPI_CREATE_TYPE_STRUCT... yes
checking whether to activate GPU support... no
checking for the requested transferable I/O support... netcdf+etsf_io
checking netcdf.h usability... yes
checking netcdf.h presence... yes
checking for netcdf.h... yes
checking for library containing nc_open... -lnetcdf
checking for library containing nf_open... -lnetcdff
checking for Fortran module includes... -I/usr/include
checking whether NetCDF Fortran wrappers work... yes
checking whether NetCDF supports MPI I/O... no
checking for ETSF_IO libraries to try... -letsf_io_utils -letsf_io
checking for Fortran module includes... -I/usr/include (cached)
checking whether ETSF_IO libraries work... no
configure: WARNING: falling back to internal etsf_io version
checking for the actual transferable I/O support... netcdf+etsf_io-fallback
checking for the requested timer support... abinit
checking for the actual timer support... abinit
checking for the requested linear algebra support... netlib
checking for BLAS support in specified libraries... no
checking for LAPACK support in specified libraries... no
checking for BLACS support in specified libraries... no
checking for ScaLAPACK support in specified libraries... no
checking whether we have a serial linear algebra support... no
configure: WARNING: falling back to internal linear algebra libraries
checking whether we have a parallel linear algebra support... no
checking for the actual linear algebra support... netlib-fallback
checking for the requested math support... none
checking for the actual math support... none
checking for the requested FFT support... none
checking for the actual FFT support... none
checking for the requested DFT support... atompaw+bigdft+libxc+wannier90
checking xc.h usability... no
checking xc.h presence... no
checking for xc.h... no
checking xc_funcs.h usability... no
checking xc_funcs.h presence... no
checking for xc_funcs.h... no
checking for library containing xc_func_init... no
checking for Fortran module includes... -I/usr/include (cached)
configure: WARNING: falling back to internal libxc version
configure: WARNING: AtomPAW recommends missing LibXC support
configure: WARNING: BigDFT requires missing linear algebra support
configure: WARNING: falling back to internal atompaw version
configure: WARNING: BigDFT requires missing LibXC support
configure: WARNING: BigDFT requires missing linear algebra support
configure: WARNING: falling back to internal bigdft version
configure: WARNING: wannier90 requires missing linear algebra support
configure: WARNING: falling back to internal wannier90 version
checking for the actual DFT support... libxc-fallback+atompaw-fallback+bigdft-fallback+wannier90-fallback
configure: using former plugins as a temporary workaround
configure: fallbacks to enable => atompaw bigdft etsf_io libxc linalg wannier90
checking whether to build atompaw... yes
checking whether to build bigdft... yes
checking whether to build etsf_io... yes
checking whether to build fox... no
checking whether to build libxc... yes
checking whether to build linalg... yes
checking whether to build netcdf... no
checking whether to build wannier90... yes
configure: using tarball repository /home/quantum/.abinit/tarballs
checking for a source tarball of LINALG... yes
checking for md5sum... md5sum
configure: tarball MD5 check succeeded
configure: applying LINALG tricks (vendor: gnu, version: 4.4)
checking whether to enable the LINALG fallback... yes
checking whether to build the LINALG fallback... yes
checking whether to enable the FOX fallback... no
checking whether to build the FOX fallback... no
checking whether to enable the NETCDF fallback... no
checking whether to build the NETCDF fallback... no
checking for a source tarball of ETSF_IO... yes
configure: tarball MD5 check succeeded
configure: applying ETSF_IO tricks (vendor: gnu, version: 4.4)
checking whether to enable the ETSF_IO fallback... yes
checking whether to build the ETSF_IO fallback... yes
checking for a source tarball of LIBXC... yes
configure: tarball MD5 check succeeded
configure: applying LIBXC tricks
checking whether to enable the LIBXC fallback... yes
checking whether to build the LIBXC fallback... yes
checking for a source tarball of ATOMPAW... yes
configure: tarball MD5 check succeeded
configure: applying AtomPAW tricks (vendor: gnu, version: 4.4)
checking whether to enable the ATOMPAW fallback... yes
checking whether to build the ATOMPAW fallback... yes
checking for a source tarball of BIGDFT... yes
configure: tarball MD5 check succeeded
configure: applying BigDFT tricks (vendor: gnu, version: 4.4)
checking whether to enable the BIGDFT fallback... yes
checking whether to build the BIGDFT fallback... yes
checking for a source tarball of WANNIER90... yes
configure: tarball MD5 check succeeded
configure: applying Wannier90 tricks (vendor: gnu, version: 4.4)
checking whether to enable the WANNIER90 fallback... yes
checking whether to build the WANNIER90 fallback... yes

 ==============================================================================
 === Nightly builds                                                         ===
 ==============================================================================

checking whether to build test timeout code... no
checking timeout for automatic tests... none

 ==============================================================================
 === Experimental developments                                              ===
 ==============================================================================

checking whether to enable bindings... no
checking whether to enable BSE unpacking... no
checking whether to enable CLib... no
checking whether to build exports... no
checking whether to accelerate 'make check'... no
checking whether to enable GW cut-off... no
checking whether to enable GW double-precision calculations... no
checking whether to enable optimal GW... no
checking whether to enable GW wrapper... no
checking whether to activate maintainer checks... no
checking whether to use macroave... yes
checking whether to reduce 'make check' for packaging... no
checking whether to read input from stdin... yes
checking whether to activate Symmetric Multi-Processing... no
checking whether to activate ZDOTC and ZDOTU workaround... no

 ==============================================================================
 === Subsystems                                                             ===
 ==============================================================================

configure: the Abinit GUI will never be built

 ==============================================================================
 === Output                                                                 ===
 ==============================================================================

configure: creating ./config.status
config.status: creating config.dump
config.status: creating config.mk
config.status: creating config.pc
config.status: creating config.sh
config.status: creating config/wrappers/wrap-fc
config.status: creating src/incs/Makefile
config.status: creating src/mods/Makefile
config.status: creating src/16_hideleave/m_build_info.F90
config.status: creating tests/tests.env
config.status: creating tests/tests-install.env
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating src/01_gsl_ext/Makefile
config.status: creating src/01_interfaces_ext/Makefile
config.status: creating src/01_macroavnew_ext/Makefile
config.status: creating src/01_qespresso_ext/Makefile
config.status: creating src/02_clib/Makefile
config.status: creating src/10_defs/Makefile
config.status: creating src/12_hide_mpi/Makefile
config.status: creating src/14_hidewrite/Makefile
config.status: creating src/15_gpu_toolbox/Makefile
config.status: creating src/16_hideleave/Makefile
config.status: creating src/18_memory_mpi/Makefile
config.status: creating src/18_timing/Makefile
config.status: creating src/27_toolbox_oop/Makefile
config.status: creating src/28_numeric_noabirule/Makefile
config.status: creating src/32_contract/Makefile
config.status: creating src/32_util/Makefile
config.status: creating src/42_geometry/Makefile
config.status: creating src/42_nlstrain/Makefile
config.status: creating src/42_parser/Makefile
config.status: creating src/43_ptgroups/Makefile
config.status: creating src/44_geomoptim/Makefile
config.status: creating src/45_psp_parser/Makefile
config.status: creating src/47_xml/Makefile
config.status: creating src/49_gw_toolbox_oop/Makefile
config.status: creating src/50_abitypes_defs/Makefile
config.status: creating src/51_manage_cuda/Makefile
config.status: creating src/51_manage_mpi/Makefile
config.status: creating src/52_fft_mpi_noabirule/Makefile
config.status: creating src/53_abiutil/Makefile
config.status: creating src/53_ffts/Makefile
config.status: creating src/53_spacepar/Makefile
config.status: creating src/56_mixing/Makefile
config.status: creating src/56_recipspace/Makefile
config.status: creating src/56_xc/Makefile
config.status: creating src/57_iovars/Makefile
config.status: creating src/59_io_mpi/Makefile
config.status: creating src/61_ionetcdf/Makefile
config.status: creating src/62_cg_noabirule/Makefile
config.status: creating src/62_iowfdenpot/Makefile
config.status: creating src/62_occeig/Makefile
config.status: creating src/62_poisson/Makefile
config.status: creating src/62_wvl_wfs/Makefile
config.status: creating src/63_bader/Makefile
config.status: creating src/64_atompaw/Makefile
config.status: creating src/65_nonlocal/Makefile
config.status: creating src/65_psp/Makefile
config.status: creating src/66_paw/Makefile
config.status: creating src/66_wfs/Makefile
config.status: creating src/67_common/Makefile
config.status: creating src/68_dmft/Makefile
config.status: creating src/68_recursion/Makefile
config.status: creating src/68_rsprc/Makefile
config.status: creating src/69_wfdesc/Makefile
config.status: creating src/70_gw/Makefile
config.status: creating src/71_bse/Makefile
config.status: creating src/72_response/Makefile
config.status: creating src/77_ddb/Makefile
config.status: creating src/77_lwf/Makefile
config.status: creating src/77_suscep/Makefile
config.status: creating src/79_seqpar_mpi/Makefile
config.status: creating src/83_cut3d/Makefile
config.status: creating src/93_rdm/Makefile
config.status: creating src/95_drive/Makefile
config.status: creating src/98_main/Makefile
config.status: creating src/libs/Makefile
config.status: creating tests/Nightly/Makefile
config.status: creating plugins/Makefile
config.status: creating plugins/atompaw/Makefile
config.status: creating plugins/bigdft/Makefile
config.status: creating plugins/etsf_io/Makefile
config.status: creating plugins/fox/Makefile
config.status: creating plugins/libxc/Makefile
config.status: creating plugins/linalg/Makefile
config.status: creating plugins/netcdf/Makefile
config.status: creating plugins/wannier90/Makefile
config.status: creating bindings/Makefile
config.status: creating bindings/parser/Makefile
config.status: creating doc/Makefile
config.status: creating tests/Makefile
config.status: creating config.h
config.status: executing depfiles commands
config.status: executing dump-optim commands
config.status: executing script-perms commands
config.status: executing long-lines commands

 ==============================================================================
 === Final remarks                                                          ===
 ==============================================================================


Summary of important options:

  * C compiler      : gnu version 4.4
  * Fortran compiler: gnu version 4.4
  * architecture    : unknown unknown (64 bits)

  * debugging       : basic
  * optimizations   : standard

  * MPI    enabled  : yes
  * MPI-IO enabled  : yes
  * GPU    enabled  : no (none)

  * TRIO   flavor = netcdf+etsf_io-fallback
  * TIMER  flavor = abinit (libs: ignored)
  * LINALG flavor = netlib-fallback (libs: internal)
  * FFT    flavor = none (libs: ignored)
  * MATH   flavor = none (libs: ignored)
  * DFT    flavor = libxc-fallback+atompaw-fallback+bigdft-fallback+wannier90-fallback

Configuration complete.
You may now type "make" to build ABINIT.
(or, on a SMP machine, "make mj4", or "make multi multi_nprocs=")

With that complete, we "make" our parallel Abinit install.

user@machine:~/abinit-6.8.1$ make mj4
user@machine:~/abinit-6.8.1$ sudo make install

The above runs successfully (for me) and places abinit in /usr/local/bin (which is already in your path).

To run tests, simply do the following:

user@machine:~/abinit-6.8.1$ cd tests/
user@machine:~/abinit-6.8.1/tests$ ls
user@machine:~/abinit-6.8.1/tests$ make tests_min
user@machine:~/abinit-6.8.1/tests$ 
user@machine:~/abinit-6.8.1/tests$ exit
user@adamant49:~/Programs$ exit

The above may not be an "optimized" installation, but works perfectly well (look for a possible tweak to the above that may effort some optimization).

Finally, running Abinit in parallel with OpenMPI is quite simple.

mpirun -np 4 /usr/local/bin/abinit < RUN.files >& RUN.log &

No -machinefile is needed, as we're running in SMP mode, and no mpd daemon needs to be started.