Peptide Springiness By Terahertz Spectroscopy – An Upcoming Cover For Angewandte Chemie (And A POV-Ray File For Generating Springs)

image_m_anie201603825-toc-0001-m

From: onlinelibrary.wiley.com/doi/10.1002/anie.201603825/full

Image caption: An approach combining terahertz spectroscopy, X-ray diffraction, and solid-state density functional theory was utilized to accurately measure the elasticities of poly-l-proline helices by probing their spring-like vibrational motions. In their communication (DOI: 10.1002/anie.201602268), T. M. Korter and co-workers reveal that poly-l-proline is less rigid than commonly expected, and that the all-cis and all-trans helical forms exhibit significantly different Young's moduli.

Article: onlinelibrary.wiley.com/doi/10.1002/anie.201602268/abstract

Abstract: The rigidity of poly-l-proline is an important contributor to the stability of many protein secondary structures, where it has been shown to strongly influence bulk flexibility. The experimental Young's moduli of two known poly-l-proline helical forms, right-handed all-cis (Form-I) and left-handed all-trans (Form-II), were determined in the crystalline state by using an approach that combines terahertz time-domain spectroscopy, X-ray diffraction, and solid-state density functional theory. Contrary to expectations, the helices were found to be considerably less rigid than many other natural and synthetic polymers, as well as differing greatly from each other, with Young's moduli of 4.9 and 9.6 GPa for Forms I and II, respectively.

With thanks to Prof. Timothy Korter and Dr. Michael Ruggiero for letting me flex some rendering chops (and extra to Tim for knowing what he wanted to see early on).

The cover (well, a cover – they cram quite a bit of artwork into their journal nowadays) for this month's Angewandte Chemie highlights the correspondence between mechanical spring motion and the excitation of small alpha-helices by terahertz spectroscopy (a spectroscopic method capable of exciting small molecules at a low-enough frequency to excite the large-amplitude motions of, here, short peptides).

I was given a momentary pause on the way to coffee this morning listening to Chick Corea's Trilogy album when one of several of Brian Blade's solos reminded me of what Art Taylor said of being a great drummer. "Know the songs." There's a similarity between drum solos and science graphics – you can either do whatever-the-hell you want as long as it looks/sounds great, or you can take the effort to make both reference strongly back to the theme. Hearing the melody in a drum solo and extracting the key points of an article from just one image are not at all dissimilar. In both cases, you get reinforcement (to either direction) from the ones paying the most attention.

With that digression aside – you may have asked yourself, "Just how did he manage those smooth, reflective, luscious springs in POV-Ray" My suspicion was that someone must have rendered a spring in POV-Ray in the last decade and provided the .pov file in some directory somewhere online. That search eventually produced fruit in the form of a wonderful set of tutorials by Friedrich A. Lohmueller. The good news was that his file provided all the obvious basics – take a rendered sphere and make it walk a spiraling path along an axis, leaving images of itself all the way down until N number of coils were generated. The texture, lighting, color scheme, etc., were all secondary. That said, his .pov file references back into a few files for colors(.inc), finish(.ini), and textures(.inc) that made the .pov a little less portable if you didn't have a proper POV-Ray installed (and, being on a Mac, I'm still using MEGAPov until a miracle occurs and a new version of POV-Ray is released). These color/texture calls are just as easily embedded into the .pov file itself to make life easier. The result is the .pov file below, containing a reformed version of his original spring .pov file, some different labeling to point out where changes can occur, the call of colors by rgb, and blocked out [finish] sections so you can change the look of the spring to taste.

Download spring_somewhereville_dot_com.pov

// created by Friedrich A. Lohmueller, 2003 / 2010 / Jan-2011
// modified by Damian G. Allis, somewhereville.com, Mar-2016

// #include "textures.inc"

global_settings
	{
	assumed_gamma 1.0
	}

camera
	{
	angle 25                              //   smaller = closer
        location  < 0.0, 1.0, -5.0 >          //   -5.0 = distance to spring
        right x * image_width / image_height  //   want it larger --> go less neg.
        look_at < 0.0, 1.0, 0.0 >             //   want is smaller --> go more neg.
	}

light_source
	{
	< 1500, 2500, -2500 >
	color rgb < 1.0, 1.0, 1.0 >
	}

background 
	{
    color rgb < 1.0, 1.0, 1.0 >
	}

//
// begin the math to make the spring by spiraling a single sphere
//

#declare ampli = 0.50 ;                     // stretches and compresses the spring
#declare min_length = 0.80 ;
#declare mid_length = ampli + min_length ;
#declare time_test = 0.25 ;                 //0.25/0.75 shows max/min extention

#declare sprnglngth = mid_length + ampli * sin((clock + time_test) * 2 * pi) ;

#declare spiral =

union
	{
 	#local n_per_rev = 300 ;                   // spheres per spring revolution
 	#local n_of_rev = 4.00 ;                   // total coil count for the spring
 	#local h_per_ref = sprnglngth / n_of_rev ; // rise per revolution
 	#local nr = 0 ;                            // start loop
 	#while (nr < n_per_rev * n_of_rev)         // loop the spring sphere until...
    sphere
		{
    	< 0, -0.4, 0 > , 0.05                    // 0.05 adjusts the sphere diameter
    	translate< 0.25, -nr * h_per_ref / n_per_rev, 0.0 >
        rotate< 0, nr * 360 / n_per_rev, 0 >
		texture
			{
			pigment 
				{
				rgb < 0.658824, 0.658824, 0.658824 >
				}
            finish                               // adjust below to taste
        		{
            	ambient 0.050 
            	diffuse 0.500 
            	phong 0.1 
            	phong_size 2.500 
            	specular 0.500
		        reflection 0.15
		        brilliance 8
		        roughness 0.1
				}
			}
		}
	#local nr = nr + 1 ;
	#end
	} 

//
// end the math to make the spring by spiraling a single sphere
//

object
	{
	spiral translate< 0.0, 2.3, 0.0>       // translates "spiral" on the screen
	}

If you download the .pov file and run it, you should produce the spring image below – the fun is yours to make modifications to the file and see what those modifications do.

2016may13_spring

Isotopically-Labeled Solid-State Vibrational Mode Energies And Intensities In Crystal09 – A Simple How-To

The generation of isotopically-substituted molecular crystal spectra has become a point of interest, which means blog post. To be clear, this is for cases where isotopic substitution does not affect the crystal geometry – the crystal cell does not change significantly upon deuteration (and for those who believe isotopic substitution never leads to significant changes in the solid, I refer you Zhou, Kye, and Harbison's article on Isotopomeric Polymprphism and their work on 4-methylpyridine pentachlorophenol, which changes dramatically upon deuteration. I beat on this point because blindly assuming of the crystal cell geometry in such cases will produce spectra noticeably different than measured. It's NOT the calculation's fault!).

The generation of isotopically-substituted spectra and intensities in Crystal09 is trivial provided that you KEEP THE FREQINFO.DAT FILE. In fact, you need keep ONLY the FREQINFO.DAT to generate these spectra, which greatly reduces file transfer loads and allows for the scripted calculation of new vibrational spectra and thermodynamic data post-frequency calculation.

As my example system, I'm using the dispersion-corrected crystal cell of alpha-HMX (I have it handy, it's a small system, and having anything about HMX on your website is proven to increase traffic) at the B3LYP/6-31G(d,p) level of theory. Original input file (the one where the original normal mode analysis is performed) is below:

Test - alpha-HMX 6-31Gdp set DFT/B3LYP FREQ
CRYSTAL
0 0 0
43
15.14 23.89 5.913 124.3
14
6      1.016493675797E-01 -4.109909899348E-02 -3.351438244488E-03
6     -6.539109813231E-02 -6.180633576707E-02 -1.110575784790E-02
1      9.149797846691E-02 -4.382919469310E-02 -1.860042940246E-01
1      1.558888705857E-01 -6.829708099502E-02  4.595161229829E-02
1     -5.138242817334E-02 -5.844587273099E-02 -1.920922064181E-01
1     -9.781600273101E-02 -1.015710562102E-01  2.063738273292E-02
7      1.992579327285E-02 -5.951921578598E-02  1.040704228546E-01
7      1.232154652110E-01  1.634305404407E-02  5.951841980010E-02
7      2.220759010770E-02 -7.142100857312E-02  3.299259852838E-01
7      2.054067942916E-01  2.817244373261E-02  1.473285310628E-01
8     -4.761487685316E-02 -8.656669456613E-02  4.192568497756E-01
8      9.327421157186E-02 -6.479426971916E-02  4.286363161888E-01
8      2.563441491059E-01 -1.128705054032E-02  1.760581823035E-01
8      2.225071782791E-01  7.736574474011E-02  1.903699942346E-01
FREQCALC
INTENS
END
END
8 4
0 0 6 2.0 1.0
 5484.671700         0.1831100000E-02
 825.2349500         0.1395010000E-01
 188.0469600         0.6844510000E-01
 52.96450000         0.2327143000    
 16.89757000         0.4701930000    
 5.799635300         0.3585209000  
0 1 3 6.0 1.0
 15.53961600        -0.1107775000         0.7087430000E-01
 3.599933600        -0.1480263000         0.3397528000    
 1.013761800          1.130767000         0.7271586000    
0 1 1 0.0 1.0
 0.2700058000          1.000000000          1.000000000
0 3 1 0.0 1.0
 0.800000000          1.00000000    
7 4
0 0 6 2.0 1.0
       4173.51100         0.183480000E-02
       627.457900         0.139950000E-01
       142.902100         0.685870000E-01
       40.2343300         0.232241000    
       12.8202100         0.469070000    
       4.39043700         0.360455000    
0 1 3 5.0 1.0
       11.6263580        -0.114961000         0.675800000E-01
       2.71628000        -0.169118000         0.323907000    
      0.772218000          1.14585200         0.740895000    
0 1 1 0.0 1.0
      0.212031300          1.00000000          1.00000000    
0 3 1 0.0 1.0
 0.800000000          1.00000000    
6 4
0 0 6 2.0 1.0
    .3047524880D+04   .1834737130D-02
    .4573695180D+03   .1403732280D-01
    .1039486850D+03   .6884262220D-01
    .2921015530D+02   .2321844430D+00
    .9286662960D+01   .4679413480D+00
    .3163926960D+01   .3623119850D+00
0 1 3 4.0 1.0
    .7868272350D+01  -.1193324200D+00   .6899906660D-01
    .1881288540D+01  -.1608541520D+00   .3164239610D+00
    .5442492580D+00   .1143456440D+01   .7443082910D+00
0 1 1 0.0 1.0
    .1687144782D+00   .1000000000D+01   .1000000000D+01
0 3 1 0.0 1.0
    .8000000000D+00   .1000000000D+01
1 3
0 0 3 1.0 1.0
    .1873113696D+02   .3349460434D-01
    .2825394365D+01   .2347269535D+00
    .6401216923D+00   .8137573262D+00
0 0 1 0.0 1.0
    .1612777588D+00   .1000000000D+01
0 2 1 0.0 1.0
    .1100000000D+01   .1000000000D+01
99 0
END
DFT
B3LYP
XLGRID
END
EXCHSIZE
10654700
BIPOSIZE
10654700
TOLINTEG
8 8 8 8 16
SCFDIR
MAXCYCLE
100
TOLDEE
11
GRIMME
1.05 20. 25.
4
1 0.14 1.001
6 1.75 1.452 
7 1.23 1.397
8 0.70 1.342
SHRINK
8 8
LEVSHIFT
5 0
FMIXING
50
END
END

Upon completion of this run, you need only the FREQINFO.DAT file, the last set of coordinates from the .OUT file (for atom counting purposes) and an input file which is modified from the original only in the specification of the ISOTOPES section and which includes a RESTART.

Question – how does one deal with isotopically-labeling atoms when it breaks the space group symmetry? If I isotopically label Atom 1 in the asymmetric unit, what happens to the other N symmetry-related atoms?

Answer – Crystal09, in its infinite wisdom, does not consider the asymmetric unit in the isotopic substitution scheme. If you've 14 atoms in the asymmetric unit (the symmetry-unique atoms you provide in the input file)…

14
6      1.016493675797E-01 -4.109909899348E-02 -3.351438244488E-03
6     -6.539109813231E-02 -6.180633576707E-02 -1.110575784790E-02
...
8      2.563441491059E-01 -1.128705054032E-02  1.760581823035E-01
8      2.225071782791E-01  7.736574474011E-02  1.903699942346E-01

and 56 atoms in the full unit cell…

ATOMS IN THE ASYMMETRIC UNIT   14 - ATOMS IN THE UNIT CELL:   56
     ATOM              X/A                 Y/B                 Z/C    
 *******************************************************************************
   1 T   6 C    -1.460999048177E-01  1.393970283287E-01  6.390170683069E-02
   2 F   6 C     1.393970283287E-01 -1.460999048177E-01 -5.719883034171E-02
   3 F   6 C     3.071988303417E-01  1.860982931693E-01  1.106029716713E-01
   4 F   6 C     1.860982931693E-01  3.071988303417E-01  3.960999048177E-01
...
  53 T   8 O     4.522856069554E-02  3.355114277736E-01  1.095029287847E-01
  54 F   8 O     3.355114277736E-01  4.522856069554E-02 -4.902429172538E-01
  55 F   8 O    -2.597570827462E-01  1.404970712153E-01 -8.551142777356E-02
  56 F   8 O     1.404970712153E-01 -2.597570827462E-01  2.047714393045E-01

your ISOTOPES section relies on the numbering of the atoms in the "56 atom" list.

The input file below will calculate an isotopically-labeled vibrational spectrum for 8 of the hydrogen atoms that ends up breaking the unit cell symmetry (which will be more obvious from the produced mode energies). Again, the atom numbers come from the "ATOMS IN THE ASYMMETRIC UNIT" part of the original optimization by which you performed the original normal mode analysis (hopefully).

Test - alpha-HMX 6-31Gdp set DFT/B3LYP FREQ - Isotopic Substitution
CRYSTAL
0 0 0
43
15.14 23.89 5.913 124.3
14
6      1.016493675797E-01 -4.109909899348E-02 -3.351438244488E-03
6     -6.539109813231E-02 -6.180633576707E-02 -1.110575784790E-02
1      9.149797846691E-02 -4.382919469310E-02 -1.860042940246E-01
1      1.558888705857E-01 -6.829708099502E-02  4.595161229829E-02
1     -5.138242817334E-02 -5.844587273099E-02 -1.920922064181E-01
1     -9.781600273101E-02 -1.015710562102E-01  2.063738273292E-02
7      1.992579327285E-02 -5.951921578598E-02  1.040704228546E-01
7      1.232154652110E-01  1.634305404407E-02  5.951841980010E-02
7      2.220759010770E-02 -7.142100857312E-02  3.299259852838E-01
7      2.054067942916E-01  2.817244373261E-02  1.473285310628E-01
8     -4.761487685316E-02 -8.656669456613E-02  4.192568497756E-01
8      9.327421157186E-02 -6.479426971916E-02  4.286363161888E-01
8      2.563441491059E-01 -1.128705054032E-02  1.760581823035E-01
8      2.225071782791E-01  7.736574474011E-02  1.903699942346E-01
FREQCALC
RESTART
ISOTOPES
8
9  2
10 2
11 2
13 2
14 2
15 2
16 2
18 2
INTENS
END
END
8 4
0 0 6 2.0 1.0
 5484.671700         0.1831100000E-02
 825.2349500         0.1395010000E-01
 188.0469600         0.6844510000E-01
 52.96450000         0.2327143000    
 16.89757000         0.4701930000    
 5.799635300         0.3585209000  
0 1 3 6.0 1.0
 15.53961600        -0.1107775000         0.7087430000E-01
 3.599933600        -0.1480263000         0.3397528000    
 1.013761800          1.130767000         0.7271586000    
0 1 1 0.0 1.0
 0.2700058000          1.000000000          1.000000000
0 3 1 0.0 1.0
 0.800000000          1.00000000    
7 4
0 0 6 2.0 1.0
       4173.51100         0.183480000E-02
       627.457900         0.139950000E-01
       142.902100         0.685870000E-01
       40.2343300         0.232241000    
       12.8202100         0.469070000    
       4.39043700         0.360455000    
0 1 3 5.0 1.0
       11.6263580        -0.114961000         0.675800000E-01
       2.71628000        -0.169118000         0.323907000    
      0.772218000          1.14585200         0.740895000    
0 1 1 0.0 1.0
      0.212031300          1.00000000          1.00000000    
0 3 1 0.0 1.0
 0.800000000          1.00000000    
6 4
0 0 6 2.0 1.0
    .3047524880D+04   .1834737130D-02
    .4573695180D+03   .1403732280D-01
    .1039486850D+03   .6884262220D-01
    .2921015530D+02   .2321844430D+00
    .9286662960D+01   .4679413480D+00
    .3163926960D+01   .3623119850D+00
0 1 3 4.0 1.0
    .7868272350D+01  -.1193324200D+00   .6899906660D-01
    .1881288540D+01  -.1608541520D+00   .3164239610D+00
    .5442492580D+00   .1143456440D+01   .7443082910D+00
0 1 1 0.0 1.0
    .1687144782D+00   .1000000000D+01   .1000000000D+01
0 3 1 0.0 1.0
    .8000000000D+00   .1000000000D+01
1 3
0 0 3 1.0 1.0
    .1873113696D+02   .3349460434D-01
    .2825394365D+01   .2347269535D+00
    .6401216923D+00   .8137573262D+00
0 0 1 0.0 1.0
    .1612777588D+00   .1000000000D+01
0 2 1 0.0 1.0
    .1100000000D+01   .1000000000D+01
99 0
END
DFT
B3LYP
XLGRID
END
EXCHSIZE
10654700
BIPOSIZE
10654700
TOLINTEG
8 8 8 8 16
SCFDIR
MAXCYCLE
100
TOLDEE
11
GRIMME
1.05 20. 25.
4
1 0.14 1.001
6 1.75 1.452 
7 1.23 1.397
8 0.70 1.342
SHRINK
8 8
LEVSHIFT
5 0
FMIXING
50
END
END

The difference is in the FREQCALC section, which calls RESTART (to use the FREQINFO.DAT file), ISOTOPES (obvious), the total number of atoms that are having their isotopes changed (8), then the list, containing the atom number and the new mass (here, 2 for deuterium).

The proof is in the high-frequency region, where the last 16 modes (H-atom motion) in the non-deuterated form…

 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

    MODES         EIGV          FREQUENCIES     IRREP  IR   INTENS    RAMAN
             (HARTREE**2)   (CM**-1)     (THZ)             (KM/MOL)
...
  153- 153    0.2003E-03   3106.1384   93.1197  (A2 )   I (     0.00)   A
  154- 154    0.2003E-03   3106.5054   93.1307  (B1 )   A (     0.02)   A
  155- 155    0.2004E-03   3106.5586   93.1323  (A1 )   A (     0.23)   A
  156- 156    0.2004E-03   3106.8420   93.1408  (B2 )   A (     0.48)   A
  157- 157    0.2017E-03   3117.1664   93.4503  (B2 )   A (     1.13)   A
  158- 158    0.2018E-03   3117.4901   93.4600  (B1 )   A (     2.33)   A
  159- 159    0.2021E-03   3120.2876   93.5439  (A1 )   A (   115.24)   A
  160- 160    0.2022E-03   3120.7805   93.5586  (A2 )   I (     0.00)   A
  161- 161    0.2131E-03   3203.6552   96.0432  (A1 )   A (    44.59)   A
  162- 162    0.2131E-03   3203.6581   96.0433  (B2 )   A (   115.98)   A
  163- 163    0.2132E-03   3204.6505   96.0730  (B1 )   A (    15.30)   A
  164- 164    0.2132E-03   3204.8874   96.0801  (A2 )   I (     0.00)   A
  165- 165    0.2157E-03   3223.4669   96.6371  (A1 )   A (    44.98)   A
  166- 166    0.2157E-03   3223.5803   96.6405  (B2 )   A (    27.02)   A
  167- 167    0.2158E-03   3223.8536   96.6487  (B1 )   A (    35.26)   A
  168- 168    0.2158E-03   3224.3355   96.6631  (A2 )   I (     0.00)   A

change to the following last 16 modes (H/D-atom motion) upon deuteration. Note the mode energies split and the mode symmetries go from (A1,A2,B1,B2) to (A). Also note your IR mode intensities change, giving you the complete picture upon isotopic substitution.

 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

    MODES         EIGV          FREQUENCIES     IRREP  IR   INTENS    RAMAN
             (HARTREE**2)   (CM**-1)     (THZ)             (KM/MOL)
...
  153- 153    0.1074E-03   2274.8942   68.1996  (A  )   A (     1.07)   A
  154- 154    0.1075E-03   2275.5949   68.2206  (A  )   A (     3.75)   A
  155- 155    0.1075E-03   2275.7008   68.2238  (A  )   A (     2.93)   A
  156- 156    0.1099E-03   2300.7446   68.9746  (A  )   A (     4.68)   A
  157- 157    0.1148E-03   2351.7846   70.5047  (A  )   A (    11.32)   A
  158- 158    0.1183E-03   2387.0269   71.5613  (A  )   A (    36.17)   A
  159- 159    0.1183E-03   2387.2610   71.5683  (A  )   A (    16.04)   A
  160- 160    0.1184E-03   2387.6687   71.5805  (A  )   A (     3.73)   A
  161- 161    0.2006E-03   3108.6223   93.1942  (A  )   A (     0.93)   A
  162- 162    0.2009E-03   3110.5061   93.2506  (A  )   A (    12.43)   A
  163- 163    0.2009E-03   3110.7567   93.2581  (A  )   A (    13.67)   A
  164- 164    0.2039E-03   3134.0133   93.9554  (A  )   A (    40.48)   A
  165- 165    0.2147E-03   3215.5160   96.3987  (A  )   A (    19.38)   A
  166- 166    0.2157E-03   3223.4291   96.6360  (A  )   A (    35.29)   A
  167- 167    0.2157E-03   3223.5925   96.6409  (A  )   A (    29.50)   A
  168- 168    0.2158E-03   3223.8729   96.6493  (A  )   A (     8.37)   A