Upstate New York Stargazing – February, 2018

Author's Note: The "Upstate New York Stargazing" series ran on the newyorkupstate.com and syracuse.com websites (and limited use in-print) from 2016 to 2018. For the full list of articles, see the Upstate New York Stargazing page.

Upstate NY Stargazing in February: Morning planets and early notice of a doomed space station

The "prediction" of where the Tiangong-1 space station will fall back to earth. Yellow region equals highest probability. The statisticians at Aerospace Corp. predict that your chance of winning the Powerball that week is one-million times greater than of your being struck by falling debris.(.)

Published: Feb. 01, 2018, 5:27 p.m.

By Damian Allis

At some point, pretty soon, a Chinese space station is going to crash-land somewhere, likely somewhere half-way up north or down south of the equator – somewhere between the land and water spanned by New York and southern Argentina, Northern Italy and below the Cape of Good Hope, or northern Japan and southern New Zealand. Is that non-specific enough?

The above image, produced by Aerospace Corporation, sums up the uncertainty in location. The timing is equally fuzzy, with estimates for the approach and disintegration of the Chinese Tiangong-1 space station ranging from mid-to-late March. The Tiangong-1 is China's first attempt at their own space station – set for two years of operation when launched in 2011 to test all the core mechanics of bringing up humans and other payload. With two separate launches of three crew members each, the Tiangong-1 served its ultimate purposes and was finally decommissioned in early 2016. It was the amateur satellite tracking community that noticed the Tiangong-1 was not quite following its expected orbit, with the Chinese Space Agency eventually acknowledging that the station was not under their control and would eventually fall back to Earth.

Saudi inspectors examining a crash-landed PAM-D module in 2001.

The chances of any parts of the Tiangong-1 hitting a populated area during its return is extremely small. In the eyes of the space science and space mission communities, the fall back to Earth of the Tiangong-1 is far favorable to the other obvious solution – destroying the station in orbit. The Chinese did this in 2007 with a successful anti-satellite missile test on a Fengyun-1C weather satellite, producing a debris cloud that accounts for over half the "space junk" tracked by NASA and other agencies. While space is big, this and other space debris can be moving many miles per second – a threat large enough that even the International Space Station sometimes has to change its orbit slightly to get out of the way of something big enough to do real damage.

Lectures And Observing Opportunities In Upstate/Central New York

New York has a number of astronomers, astronomy clubs, and observatories that host public sessions throughout the year. Announced sessions from respondent NY astronomy organizations are provided below for February. As wind and cloud cover are always factors when observing, please check the provided contact information and/or email the groups a day-or-so before an announced session, as some groups will also schedule weather-alternate dates. Also use the contact info for directions and to check on any applicable event or parking fees. And bring one more layer of clothing than you think you are going to need!

Astronomy Events Calendar

OrganizerLocationEventDateTimeContact Info
Adirondack Public ObservatoryTupper Lake1st Friday ObservingFeb. 27:00 PMemail, website
Adirondack Public ObservatoryTupper Lake3rd Friday ObservingFeb. 167:00 PMemail, website
Albany Area Amateur Astronomers & Dudley ObservatorySchenectadyAAAA MeetingFeb. 157:30 – 9 PMemail, website
Albany Area Amateur Astronomers & Dudley ObservatorySchenectadyNight Sky AdventureFeb. 207 – 8:30 PMemail, website
Astronomy Section, Rochester Academy of ScienceRochesterMember MeetingFeb. 27:30 – 9:30 PMemail, website
Baltimore WoodsMarcellusFinest Winter SkiesFeb. 165:30 – 8 PMemail, website
Baltimore WoodsMarcellusSolar Viewing ProgramFeb. 241 – 3 PMemail, website
Kopernik Observatory & Science CenterVestalFriday Night ObservingFeb. 27 – 9 PMemail, website
Kopernik Observatory & Science CenterVestalKAS Monthly MeetingFeb. 77 – 9 PMemail, website
Kopernik Observatory & Science CenterVestalFriday Night ObservingFeb. 97 – 9 PMemail, website
Kopernik Observatory & Science CenterVestalFriday Night ObservingFeb. 167 – 9 PMemail, website
Kopernik Observatory & Science CenterVestalWinter Star PartyFeb. 177 – 9 PMemail, website
Kopernik Observatory & Science CenterVestalFriday Night ObservingFeb. 237 – 9 PMemail, website
Mohawk Valley Astronomical SocietyWatervilleMeeting and LectureFeb. 147:30 – 9 PMemail, website
Mohawk Valley Astronomical SocietyWatervillePublic Star GazingFeb. 177:30 – 10 PMemail, website
Syracuse Astronomical SocietySyracuseLecture @ OCC & ObservingFeb. 167 – 9 PMemail, website

Lunar Phases

Full MoonThird QuarterNew MoonFirst QuarterFull Moon
Jan. 31, 8:26 amFeb. 7, 10:53 amFeb. 15, 4:05 pmFeb. 23, 3:09 amMar. 1, 7:51 pm

The Moon's increasing brightness as Full Moon approaches washes out fainter stars, random meteors, and other celestial objects – this is bad for most observing, but excellent for new observers, as only the brightest stars (those that mark the major constellations) and planets remain visible for your easy identification. If you've never tried it, the Moon is a wonderful binocular object. The labeled image identifies features easily found with low-power binoculars.

Lunar features prominent in low-power binoculars.

The excitement over two supermoons in January and two not-super-but-still-pleasant full moons in March was bound to come at some price. In our case, we will pass through February without a Full Moon – the first time in 19 years. This is an entirely predictable event, with the Greek astronomer Meton calculating back in the fifth century B.C.E. that the Moon goes through a nearly-19-year cycle before lining up again with the solar year. February is not without some lunar excitement, as a partial solar eclipse will be had on the 15th. Sadly for us, this will only be visible over the southern region of South America and Antarctica.

Observing Guides

Items and events listed below assume you're outside and observing most anywhere in New York. The longer you're outside and away from indoor or bright lights, the better your dark adaption will be. If you have to use your smartphone, find a red light app or piece of red acetate, else set your brightness as low as possible.

The sky at 9 p.m. on Feb. 15, accurate all month except for the changing Moon position.

Evening Skies: The Winter Triangle – Sirius in Canis Major, Procyon in Canis Minor, and Betelgeuse in Orion – shares an edge with the much larger Winter Hexagon – Sirius, Procyon, Pollux in Gemini, Capella in Auriga, Aldebaran in Taurus, and Rigel in Orion. Both asterisms are due-south and as high as they will get in the nighttime sky during the early evening, making them both easy finds. Those recovered from last month's comment thread can still find Uranus in the evening sky, although it sets earlier each night, becoming a more difficult binocular object in the process.

With Orion and its cohort all above the horizon before midnight, learning eight constellations at once is as easy as following some lines within Orion's bowtie asterism.

Orion can guide you around its neighborhood. Red = belt stars to Sirius and Canis Major; Orange = Rigel and belt center to Castor and Pollux in Gemini; Yellow = Bellatrix and Betelgeuse to Canis Major; Green = Belt stars to Aldebaran and Taurus; Blue = Saiph and Orion's head to Capella in Auriga. IClick for a larger view.

Morning Skies: Early risers are treated to a welcome sight for many – the Summer Triangle fully clears the eastern horizon before sunrise. Over the next several months, it will rise earlier each night until mid-Summer, when it sits high in the sky above us during late-evening observing hours. The one thing you might not see for several more weeks is the band of the Milky Way Galaxy, which runs through the body of Cygnus the Swan. A little more distance between Cygnus-rise and sunrise is needed to keep dawn from washing out the galactic nebulosity.

Moving from the Little Dipper to the Big Dipper, continue nearly the same distance to reach the hind end of Leo the Lion – look to the west for the backwards question mark that is its mane.

The sky at 5 a.m. on Feb. 15, accurate all month except for the changing Moon position.

Planetary Viewing

Mercury and Venus: The two inner planets spend this month awash in our daylight and will be just barely visible on the western horizon at sunset on the 28th. Starting in early March, the two will make a close pairing a bit later after sunset, ideal for binocular observing.

Mars, Jupiter and Saturn: Mars.

The path of Mars away from Jupiter and towards Saturn this month.

Early risers this past December were treated to a dance involving Venus, Mars, and Jupiter. While bright Venus is on its way to being an evening target right now, we have gained ringed Saturn as a new morning target that will slowly go from a morning-to-midnight-to-evening target over the next nine months. Saturn is just clearing the eastern horizon before sunrise this month and will be a difficult target for the first few weeks, after which it joins Mars and Jupiter as an easy observing target. Jupiter in Libra and Saturn in Sagittarius move so slowly that they appear stationary this month. This leaves Mars as the swift mover, passing from Scorpius to Ophiuchus in early February and remaining there until mid-March, when it joins Saturn in Sagittarius.

The Moon makes for three bright morning groupings with Mars and Jupiter.

Those with even poor-quality binoculars are able to see the four bright satellites of Jupiter – known as the "Galilean Moons" for their first observer – and the appearance of Jupiter as a disc of light instead of a simple pinpoint like all stars. Many websites, including the Jupiter's Moons webapp at Sky & Telescope, can provide you with the real-time and future positions of the fast-moving moons for any viewing opportunity you get this and every month.

When the weather doesn't cooperate, the NASA Juno mission (tw,fb) continues to impress with hard science and beautiful images.

ISS And Tiangong-1 Flyovers

Satellite flyovers are commonplace, with several bright passes easily visible per hour in the nighttime sky, yet a thrill to new observers of all ages. Few flyovers compare in brightness or interest to the International Space Station. The flyovers of the football field-sized craft with its massive solar panel arrays and six current occupants can be predicted to within several seconds and take several minutes to complete.

ISS Flyovers

DateBrightnessApprox. StartStart Direct.Approx. EndEnd Direct.
2/1moderately6:41 PMW/NW6:44 PMN/NE
2/2very5:48 PMW/NW5:53 PMNE
2/2moderately7:25 PMNW7:26 PMN/NW
2/3moderately6:33 PMNW6:36 PMN/NE
2/4moderately7:17 PMNW7:19 PMN/NW
2/5moderately6:25 PMNW6:28 PMNE
2/5somewhat8:01 PMNW8:01 PMNW
2/6very7:09 PMNW7:11 PMN
2/7very6:16 PMNW6:21 PME/NE
2/7moderately7:52 PMW/NW7:53 PMW/NW
2/8extremely7:00 PMNW7:03 PMNE
2/9extremely6:08 PMNW6:13 PME
2/9moderately7:44 PMW/NW7:46 PMW
2/10extremely6:51 PMW/NW6:56 PMSE
2/11extremely5:59 PMNW6:05 PME/SE
2/11moderately7:36 PMW7:39 PMS/SW
2/12moderately6:43 PMW/NW6:49 PMS/SE
2/14somewhat6:36 PMW6:39 PMS/SW

For February and March, we're including flyover predictions for Tiangong-1, expected to fall back to Earth sometime in March. While not nearly as bright as the ISS – until it hits atmosphere – we will have several flyovers in the next few weeks, after which predictions become increasingly less accurate.

Tiangong-1 Flyovers

DateBrightnessApprox. StartStart Direct.Approx. EndEnd Direct.
2/6very dim6:31 AMS6:33 AME/SE
2/7dim6:27 AMS/SW6:31 AME
2/8dim6:24 AMSW6:28 AME
2/9dim6:20 AMW/SW6:25 AME
2/10somewhat6:17 AMW/SW6:21 AME
2/11somewhat6:14 AMW6:18 AME
2/12somewhat6:11 AMW6:14 AME

Predictions courtesy of heavens-above.com. Times later in the month are subject to shifts – for accurate daily predictions, visit spotthestation.nasa.gov.

While we can only speculate as to the reason why, the removal of CNY native Jeanette Epps from the next ISS Expedition crew has not gone unnoticed in the local and global media, and certainly not to the local astronomy community. Many of us await details about expedition rescheduling in hopes for news of a future launch to the ISS that is both heroic and historic.

No Major Meteor Showers This Month

As has been discussed in previous articles, meteor showers are the result of the Earth passing through the debris field of a comet or asteroid. While the orbits of scores of these objects bring them close to Earth's orbit, a limited number produce enough debris to produce significant meteor shower activity. February and March mark yearly lulls in major meteor shower activity, with the next prominent shower being the Lryids that occur in April.

The astronomy community recognizes many minor showers that are predictable in their timing and are predictably unimpressive. Those interested in seeing a full list should check out the American Meteor Society meteor shower calendar.

Learn A Constellation: Aries

Aries, in the western sky after sunset this month.

In last month's article, we used a plate-in-dining room analogy for the Solar System to explain why we see all of the observable planets passing through the twelve Zodiacal constellations. Throughout most of human history, the nighttime sky was divisible into only three parts – the large Moon and its changing phases, the countless stars that all seemed to move as one, and five bright stars that all moved at different speeds with respect to this backdrop of fixed stars – these five being the planets Mercury, Venus, Mars, Jupiter, and Saturn. The stars of the Zodiac served as markers of the planetary paths and measuring sticks by which to measure the speeds of these five wandering stars.

A question that often comes up in discussions of the Zodiacal constellations is "why 12?" Depending on how much time you spend in search engines and how much credence you give to both astronomical and astrological sources, you may find a wide range of answers. One reason comes from the history of "12" itself and the system of mathematics developed by the Babylonians, from which we still divide our hours into 60 minutes, our minutes into 60 seconds, and our circles into 360 degrees. 12 is divisible by 1, 2, 3, 4, and 6 – making it easy for the ancient temple mathematicians and field workers alike to divide quantities into the most important day-to-day fractions – one-half (6/12), one-third (4/12), one-quarter (3/12). This ease of handing the most significant fractions by dividing a fixed quantity into 12 equal pieces is also a reason why we still have 12 inches to a foot on our rulers.

The Babylonian math system is about as practical a system as one could imagine developing for a society that placed so much focus on the heavens above. If the solar year were only 360 days long instead of 365.25 days long, and the time between New Moons was exactly 30 days long instead of 29.53, one could imagine the Babylonians feeling their understanding of the heavens to be complete. In many ways, we owe these small differences – and the resulting frustration of the temple elders of the time who had to account for these small differences – a debt of gratitude for forcing civilizations to develop new physical models of how the most prominent objects in the sky actually behaved, leading us down the path to where our much more advanced understanding is today.

In fitting with the short month, we next look at the least-impressive of the Zodiacal constellations. As one of the 12 markers for the path of the bright planets, Aries the Ram has existed for nearly as long as humans have been recording the nighttime sky. First recordings of the brightest stars in Aries go back to the Babylonians, then follow the other prominent constellations through the familiar Egyptian, Greek, Roman, and Arab traditions on through to present day. Placed between Taurus in the west and Pisces in the east, Aries is well-placed in the western sky for late-evening observers in February.

Its two most prominent stars are easy catches, but it is probably easiest to find the stars of Aries by first finding the head of Taurus the Bull – the bright star Aldebaran marks one of the corners of the winter Hexagon, and the Winter Triangle even marks the direction you need to look if you use Betelgeuse as the tip of an arrow. The star Hamal is at the very bottom of the list of the 50 brightest stars in the sky, and Hamal and Sheratan easily fit in the same field of view in low-power binoculars. That said, there is little else to see in Aries under low magnification, with many of the most interesting stars and galaxies only visible through good telescopes.

Dr. Damian Allis is the director of CNY Observers and a NASA Solar System Ambassador. If you know of any other NY astronomy events or clubs to promote, please contact the author.

Original Posts:

Tags:

Upstate New York Stargazing – January, 2018

Author's Note: The "Upstate New York Stargazing" series ran on the newyorkupstate.com and syracuse.com websites (and limited use in-print) from 2016 to 2018. For the full list of articles, see the Upstate New York Stargazing page.

Upstate NY Stargazing in January: Supermoon, Quadrantids by moonlight, Uranus by binoculars

Light pillars over New Berlin, NY on Dec. 14. Photo courtesy of Nihal Dhanoa.

Published: Jan. 02, 2018, 4:12 p.m.

By Special to nyup.com

Damian Allis, Contributing Writer

The interest within the space science community about Martian habitability may leave you with the question, "Just how inhospitable is Mars?" A small part of the answer comes from Canada this past week, reporting that parts of North America were colder than Mars that same day. On Dec. 28, Gale Crater on Mars peaked at -23 C, while Montreal never cleared -24 C. While the Martian night will slip much lower in temperature, it is remarkable to consider that, despite the differences in mass, atmosphere, and distance from the Sun, there are at least two places in our Solar System where a person could be easily kept warm enough to complain about the cold.

New York winters afford us opportunities for both crystal-clear astronomy and interesting physics. Light pillars, what at first blush might look like the northern lights, occur when light from the ground reflects off of ice crystals in the atmosphere. The stunning image of the phenomenon shown above is likely powered by the Chobani Plant in New Berlin. Given the positions of the most prominent stars and the knowledge that the photo is from Dec. 14, one can even pull out a star chart and deduce that the shot was taken at around 9 p.m. from a point just south of the plant.

Lectures And Observing Opportunities In Upstate/Central New York

New York has a number of astronomers, astronomy clubs, and observatories that host public sessions throughout the year. Announced sessions from respondent NY astronomy organizations are provided below for January. As wind and cloud cover are always factors when observing, please check the provided contact information and/or email the groups a day-or-so before an announced session, as some groups will also schedule weather-alternate dates. Also use the contact info for directions and to check on any applicable event or parking fees. And bring one more layer of clothing than you think you are going to need!

Astronomy Events Calendar

OrganizerLocationEventDateTimeContact Info
Adirondack Public ObservatoryTupper Lake1st Friday ObservingJan. 57:00 PMemail, website
Adirondack Public ObservatoryTupper Lake3rd Friday ObservingJan. 197:00 PMemail, website
Albany Area Amateur Astronomers & Dudley ObservatorySchenectadyAAAA MeetingJan. 187:30 – 9:00 PMemail, website
Astronomy Section, Rochester Academy of ScienceRochesterMember MeetingJan. 57:30 – 9:30 PMemail, website
Baltimore WoodsMarcellusFinest Winter SkiesJan. 197:00 – 9:00 PMemail, website
Kopernik Observatory & Science CenterVestalKAS Monthly MeetingJan. 37:00 – 9:00 PMemail, website
Kopernik Observatory & Science CenterVestalFriday Night ObservingJan. 57:00 – 9:00 PMemail, website
Kopernik Observatory & Science CenterVestalFriday Night ObservingJan. 127:00 – 9:00 PMemail, website
Kopernik Observatory & Science CenterVestalWinter Skies TourJan. 197:00 – 11:00 PMemail, website
Kopernik Observatory & Science CenterVestalFriday Night ObservingJan. 267:00 – 9:00 PMemail, website
Mohawk Valley Astronomical SocietyWatervilleMeetingJan. 107:30 – 9:00 PMemail, website
Mohawk Valley Astronomical SocietyWatervillePublic Star GazingJan. 207:30 – 10:00 PMemail, website
Syracuse Astronomical SocietySyracuseLecture @ OCC & ObservingJan. 127:00 – 9:00 PMemail, website

Lunar Phases

Full MoonThird QuarterNew MoonFirst QuarterFull Moon
Jan. 1, 9:24 pmJan. 8, 5:25 pmJan. 16, 9:17 pmJan. 24, 5:20 pmJan. 31, 8:26 am

The Moon's increasing brightness as Full Moon approaches washes out fainter stars, random meteors, and other celestial objects – this is bad for most observing, but excellent for new observers, as only the brightest stars (those that mark the major constellations) and planets remain visible for your easy identification. If you've never tried it, the Moon is a wonderful binocular object. The labeled image identifies features easily found with low-power binoculars.

Lunar features prominent in low-power binoculars.

January begins and ends with a Full Moon. The first will likely ruin the Quadrantid meteor shower, but will also be the largest of the "supermoons" this year. The second Full Moon to occur in a given month is known as a "Blue Moon." The January Blue Moon will also qualify as a 2018 supermoon. While the descriptor "supermoon" meets with varying degrees of annoyance within the astronomical community, the closer-than-usual proximity of the Moon to the Earth on these occasions is interesting – and anyone with a camera and tripod can capture each Full Moon of the year and see these small differences in apparent size for themselves. You will also see reports of the first lunar eclipse of the year occurring on Jan. 31. For NY observers, this will begin near 6 a.m. Sadly, the eclipse for us ends too soon – Hawaii and much of Asia will see the total lunar eclipse, while those of us on the other side of the planet are instead treated to sunrise and a 7 a.m. moonset.

Observing Guides

Items and events listed below assume you're outside and observing most anywhere in New York. The longer you're outside and away from indoor or bright lights, the better your dark adaption will be. If you have to use your smartphone, find a red light app or piece of red acetate, else set your brightness as low as possible.

The sky at 9 p.m. on Jan. 15, accurate all month except for the changing Moon position.

Evening Skies: It took until December, but the Summer Triangle is finally no more in our pre-midnight sky. Early morning observers now see Vega and Deneb rising after 3 a.m. this month. The Winter Triangle – Sirius in Canis Major, Procyon in Canis Minor, and Betelgeuse in Orion – shares an edge with the much larger Winter Hexagon – Sirius, Procyon, Pollux in Gemini, Capella in Auriga, Aldebaran in Taurus, and Rigel in Orion.

With Orion and its cohort all above the horizon before midnight, learning eight constellations at once is as easy as following some lines within Orion's bowtie asterism.

Orion can guide you around its neighborhood. Red = belt stars to Sirius and Canis Major; Orange = Rigel and belt center to Castor and Pollux in Gemini; Yellow = Bellatrix and Betelgeuse to Canis Major; Green = Belt stars to Aldebaran and Taurus; Blue = Saiph and Orion's head to Capella in Auriga. Click for a larger view.

Morning Skies: There are no massive asterisms on the scale of the Winter Hexagon in the morning skies right now, but prominent and familiar shapes do abound. Moving from the Little Dipper to the Big Dipper, continue nearly the same distance to reach the hind end of Leo the Lion – look to the west for the backwards question mark that is its mane. In the same neck of the woods as the two Dippers is the Keystone asterism, marking the torso of the constellation Hercules.

The sky at 5 a.m. on Jan. 15, accurate all month except for the changing Moon position.

Planetary Viewing

Mercury: Mercury was easiest to see on Dec. 28th and is now rising a few minutes later each morning. Your best chances to see it are close to 6:30 a.m., very low on the southeast horizon, during the first two weeks of January. It will next be visible after sunset in early March, when it makes for an excellent pairing with Venus.

Venus: Venus is not easily, nor safely, observable until February, when it returns as an observing target soon after sunset.

Mars and Jupiter: Mars and Jupiter come as an unmissable pair in the early morning skies this month. Mars rises before Jupiter in Libra the Scales from the 1st to the 6th around 3:30 a.m., after which it slides past Jupiter and becomes the later arrival. Mars will move swiftly through Libra this month, just grazing the Libra/Scorpius border on Jan. 31. Jupiter and Mars will make for an excellent close pairing on the 6th and 7th, followed by a close grouping with the Moon on the 11th.

Mars and Jupiter this month, with the Moon position shown on the 11th.

Those with even poor-quality binoculars are able to see the four bright satellites of Jupiter – known as the "Galilean Moons" for their first observer – and the appearance of Jupiter as a disc of light instead of a simple pinpoint like all stars. Many websites, including the Jupiter's Moons webapp at Sky & Telescope, can provide you with the real-time and future positions of the fast-moving moons for any viewing opportunity you get this and every month.

When the weather doesn't cooperate, the NASA Juno mission (tw,fb) continues to impress with hard science and beautiful images.

Saturn: Saturn rises earlier each morning this month, making for an excellent observing target for morning observers with Mars and Jupiter after 6 a.m. after the 20th. Saturn will continue to rise earlier each morning and be visible at some point in the nighttime sky until October.

ISS And Other Bright Satellites

Satellite flyovers are commonplace, with several bright passes easily visible per hour in the nighttime sky, yet a thrill to new observers of all ages. Few flyovers compare in brightness or interest to the International Space Station. The flyovers of the football field-sized craft with its massive solar panel arrays and six current occupants can be predicted to within several seconds and take several minutes to complete.

The ISS is up in the morning before many of us until the 17th, when it disappears for a week before becoming an evening target on the 24th through the end of the month. There are six chances to see the ISS twice before starting your day, although you will have to start extra early all six times to catch these morning pairings.

ISS Flyovers

DateBrightnessApprox. StartStart Direct.Approx. EndEnd Direct.
1/1somewhat4:59 AME/NE5:00 AME/NE
1/1very6:32 AMW/NW6:36 AMNE
1/2very5:42 AMN/NE5:44 AMNE
1/3very6:24 AMNW6:28 AMNE
1/4moderately5:34 AMN/NE5:35 AMNE
1/5moderately6:16 AMN/NW6:19 AMNE
1/6moderately5:26 AMN/NE5:27 AMNE
1/6very6:59 AMNW7:04 AME/NE
1/7moderately6:08 AMNNW6:11 AMNE
1/8moderately5:18 AMN/NE5:19 AMNE
1/8very6:51 AMNW6:57 AME
1/9very6:00 AMN6:04 AME/NE
1/10moderately5:10 AMNE5:11 AME/NE
1/10exceptionally6:42 AMNW6:48 AME/SE
1/11very5:52 AMN5:56 AME
1/12moderately5:02 AME/NE5:03 AME/NE
1/12exceptionally6:34 AMW/NW6:40 AMSE
1/13exceptionally5:44 AMN5:47 AME/SE
1/14somewhat4:54 AME4:55 AME
1/14very6:26 AMW6:31 AMS/SE
1/15exceptionally5:36 AMS5:39 AMSE

Predictions courtesy of heavens-above.com. Times later in the month are subject to shifts – for accurate daily predictions, visit spotthestation.nasa.gov.

Meteor Showers: Quadrantids, From Dec. 28 to Jan. 12, Peaking Jan. 3

Meteor showers are the result of the Earth passing through the debris field of a comet or asteroid. As these objects approach the warming sun in their orbits, they leave tiny bits behind, usually no larger than grains of sand. The Earth plows through the swarm of these tiny particles at up-to 12 miles-per-second. High in the upper atmosphere, these particles burn up due to friction and ionize the air around them, producing the long light trails we see. We can predict the peak observing nights for a meteor shower because we know when and where in Earth's orbit we'll pass through these debris fields – this yearly periodicity is what let us identify and name meteor showers well before we ever had evidence of what caused them.

The Quadrantids radiant near the Big and Little Dippers, with the location of Quadrans Muralis marked out as well. Click for a larger view.

The name of each meteor shower is based on the constellation from which the shooting stars appear to radiate – a position in the sky we call the radiant. The Quadrantids are one of the few meteor showers named after a constellation that is no longer recognized by the professional astronomical community. Quadrans Muralis, the quadrant, was an addition to the nighttime sky by French astronomer Jerome Lalande back in 1795. While the quadrant, a wall-mounted instrument for measuring the angles of celestial objects, was a vital tool to astronomers of the day, the constellation never made it past the final vote at the 1922 Convention of the International Astronomical Union. For those who have never explored the history and politics of the constellations, let the quadrantids serve as a yearly reminder.

How to observe: Sadly, the Quadrantid peak this year will be washed out by the near-full Moon, making this otherwise reasonably active meteor shower a difficult one to enjoy. If you insist on braving the cold, lie as flat as possible with your feet pointed towards the radiant and your head elevated – meteors will then appear to fly right over and around you.

Those interested in seeing a full list should check out the American Meteor Society meteor shower calendar.

Learn A Constellation: Pisces

Pisces, with the Great Square of Pegasus marked to its side, and Uranus within a binocular field of view.

Those keeping track of the planetary descriptions in this series will note that, with the very rarest of exceptions, the planets you can see without any equipment are always within one of the twelve Zodiacal Constellations. This is not a coincidence!

If the Solar System were a dinner plate on a table, the eight planets would all be variously-sized morsels – peas, olives, meatballs – orbiting around a massive grapefruit at the center. As we moved once around the plate and scan the rest of the dining room, we might see a chair directly opposite the grapefruit, then a picture hanging on the wall, then an archway into the kitchen, then another chair, then other prominent objects in the distance until we'd made one complete revolution around the grapefruit – after which we'd see the same objects in the same positions during our second and future trips around the plate. Because we're all on the same plate, all of the other planetary morsels will appear between ourselves and the prominent objects we identified in our trip around the grapefruit, changing which prominent object they appear to be in front of based on how fast they – and we – are moving around the plate.

In keeping with the festive season and the foodie theme, we begin a survey of the Zodiacal Constellations at the western horizon this month with one of several Zodiac signs easily paired with wine. The prominent stars of Pisces the Fishes have been parts of constellations since Babylonian days, but were not solidly recorded in the Western astronomy tradition as fish until about 1,000 B.C.E. Its shape is roughly that of two fish tied together by a rope. Piscis Boreus, the Northern Fish, is the triangle close to the nearby Aries. Piscis Austrinus, the Southern Fish, is a pentagon of stars that share a border with Aquarius. Depending on your light pollution, neither shape may be very prominent in your sky – the Great Square of Pegasus, close to the horizon in the early evening this month, may serve as a brighter guide.

We start with Pisces this month for a very good reason. If Pisces were a clam instead of a fish, binocular observers with steady hands and good optics are treated to a greenish-blue pearl close to the hinge of the clamshell. The distant planet Uranus, the fourth largest, seventh farthest from the Sun, and bitterly cold gas giant planet, was discovered in 1781 by William Herschel. This discovery is important for two reasons. First, Uranus can only been seen without binoculars or telescope under the absolute best of observing conditions – and some amateur astronomers would even say "that's nuts." For all of human history, only Mercury-to-Saturn were known as planets to astronomers, astrologers, and anyone else until Herschel's discovery. Second, Herschel knew where to limit his observations thanks to Isaac Newton, whose revolutionary physics of the time explained why the Solar System is a flat disc of planets – and why one would only reasonably expect to find planets in the same region of the sky as the known planets – that region defined by the stars of the Zodiac.

Uranus may serve to be a difficult catch even under good conditions, but seeing this planet with your own eyes is a great way to start your observing for 2018.

Dr. Damian Allis is the director of CNY Observers and a NASA Solar System Ambassador. If you know of any NY astronomy clubs or events to promote, please contact the author.

Original Posts:

Tags: