Experimental And Theoretical Studies Of Tetramethoxy-p-benzoquinone: Infrared Spectra, Structural And Lithium Insertion Properties

Published earlier this year in RSC Advances (RSC Adv., 2013, 3, 19081-19096), a follow-up (for my part) to the study The Low-/Room-temperature Forms Of The Lithiated Salt Of 3,6-dihydroxy-2,5-dimethoxy-p-benzoquinone: A Combined Experimental And Dispersion-Corrected Density Functional Study in CrystEngComm last year. The theoretical section for this paper is a tour-de-force of Crystal09 solid-state optimizations, density functional and dispersion-correction dependence, and post-processing using Carlo Gotti’s TOPOND software. In brief, the combination of vibrational spectra, electochemical measurements, and solid-state density functional theory tests are used to predict the structure of the previously unknown lithiated tetramethoxy-p-benzoquinone structure based on the good-to-excellent agreement with two known TMQ crystal structures (the testing of density functionals and dispersion corrections being a very good survey of the pros and cons of the varied methods. If you were pondering an approach to follow to perform the same kind of theoretical analysis, the procedure set up by Gaetan and Christine in this paper is fully worth your consideration).

2013dec20_rscadvances

Gaetan Bonnard, Anne-Lise Barres, Yann Danten, Damian G. Allis, Olivier Mentre, Daniele Tomerini, Carlo Gatti, Ekaterina I. Izgorodina, Philippe Poizot and Christine Frayret*

In the search for low-polluting electrode materials for batteries, the use of redox-active organic compounds represents a promising alternative to conventional metal-based systems. In this article we report a combined experimental and theoretical study of tetramethoxy-p-benzoquinone (TMQ). In carbonate-based electrolytes, electrochemical behaviour of this compound is characterized by a reversible insertion process located at approximately 2.85 V vs. Li+/Li0. This relatively high potential reactivity, coupled with our effort to develop computational methodologies in the field of organic electrode materials, prompted us to complement these experimental data with theoretical studies performed using density functional theory (DFT). Single crystals of TMQ were synthesized and thoroughly characterized showing that this quinonic species crystallised in the P21/n space group. The experimental crystal structure of TMQ was then used to assess various DFT methods. The structural features and vibrational spectra were thus predicted by using as a whole five common density functionals (PBE, LDA, revPBE, PBEsol, B3PW91) with and without a semi-empirical correction to account for the van der Waals interactions using either Grimme’s (DFT-D2) or Tkatchenko-Scheffler (TS) scheme. The most reliable combination of the DFT functional and the explicit dispersion correction was chosen to study the Li-intercalated molecular crystal (LiTMQ) with the view of indentifying Li insertion sites. A very close agreement with the experiment was found for the average voltage by using the most stable relaxed hypothetical LiTMQ structure. Additionally, a comparison of vibrational spectra gained either for TMQ molecule and its dimer in gas phase or through periodic calculation was undertaken with respect to the experimentally measured infrared spectra. The topological features of the bonds were also investigated in conjunction with estimates of net atomic charges to gain insight into the effect of chemical bonding and intermolecular interaction on Li intercalation. Finally, pi-electron delocalization of both quinone and alkali salts of p-semiquinone were determined using the Harmonic Oscillator model of Aromaticity (HOMA) or aromatic fluctuation index (FLU) calculations.

The Low-/Room-temperature Forms Of The Lithiated Salt Of 3,6-dihydroxy-2,5-dimethoxy-p-benzoquinone: A Combined Experimental And Dispersion-Corrected Density Functional Study

In press, in CrystEngComm (DOI:10.1039/C2CE26523). This is my first full paper completely internet-powered, in that I’ve not physically met any of the other co-authors (also in the internet-powered context, the recent paper on [18]-annulene was written and submitted without sharing a room with Dr. Bruce Hudson, but we’re in the same building, so it doesn’t quite count). Also, one of the few papers for which I had no image generation duties (a rare treat).

The discussion of the very interesting possibilities of molecular redox materials in lithium-ion batteries aside, this paper presents a very thorough example of the power of computational approaches to greatly improve the understanding of solid-state molecular materials by (specifically) 1: overcoming the hydrogen position identification problems inherent in X-ray diffraction methods, 2: reproducing the changes that come with temperature variations in molecular crystals and explaining the origins of those (possibly subtle) changes by way of dispersion-corrected density functional theory, and 3: demonstrating that the nature of intermolecular interactions (specifically hydrogen bonding) can be rigorously cataloged across varied materials using post-optimization tools (in this case, using Carlo Gatti’s excellent TOPOND program).

2013dec20_crysengcommcover

Caption: Issue cover.

Gaëtan Bonnard, Anne-Lise Barrès, Olivier Mentré, Damian G. Allis, Carlo Gatti, Philippe Poizot and Christine Frayret*

Abstract

Following our first experimental and computational study of the room temperature (RT) form of the tetrahydrated 3,6-dihydroxy-2,5-dimethoxy-p-benzoquinone (LiM2DHDMQâ‹…4H2O) compound, we have researched the occurrence of hydrogen ordering in a new polymorph at lower temperature. The study of polymorphism for the Li2DHDMQâ‹…4H2O phase employs both experimental (single crystal X-ray diffraction) and theoretical approaches. While clues for disorder over one bridging water molecule were observed at RT (beta-form),a fully ordered model within a supercell has been evidenced at 100K (alpha-form) and is discussed in conjunction with the features characterizing the first polymorphic form reported previously. Density functional theory (DFT) calculations augmented with an empirical dispersion correction (DFT-D) were applied for the prediction of the structural and chemical bonding properties of the alpha and beta polymorphs of Li2DHDMQ·4H2O. The relative stability of the two polymorphic systems is evidenced. An insight into the interplay of hydrogen bonding, electrostatic and van der Waals (vdW) interactions in affecting the properties of the two polymorphs is gained. This study also shows how information from DFT-D calculations can be used to augment the information from the experimental crystal diffraction pattern and can so play an active role in crystal structure determination, especially by increasing the reliability and accuracy of H-positioning. These more accurate hydrogen coordinates allowed for a quantification of H-bonding strength through a topological analysis of the electron density (Atoms-in-molecules theory).