Some Light Science Reading. The Constellations: Libra

As first appeared in the May 2010 edition of the Syracuse Astronomical Society newsletter The Astronomical Chronicle (PDF).

Constellation Map generated with Starry Night Pro 6.

It is only fitting that, as we approach Summer and the unbelievable wealth of binocular and telescope objects that reside within the central region of the Milky Way, we spend at least one article on an otherwise mundane (to the amateur astronomer, anyway) Constellation. We endeavor this act of balance in the presentation of night sky viewing (and in the interest of accounting for all of the sky by the time these articles are done) by featuring Libra, The Scales.

The history of Libra in Western culture is one of science, religion, theft, imminent domain, here-say, and whatever existed as copyright in the Roman days (it is tough to make a Constellation associated with the Law interesting enough for prime time TV, as the only thing there is to murder is the presentation of any historical interpretation attributed to it). The reference to this collection of stars as a balance is reported to go as far back as the Sumerians (approximately 2000 B.C.), where this collection was known as “ZIBBA AN-NA”, or the “balance of heaven.” It is of particularly humorous irony this month that the Greeks were responsible for the disappearance of “the balance” from the night sky in favor of over-inflating the magnitude of the already important constellation Scorpius (for historical perspective, this article is being written as Greek economic infrastructure is falling apart faster than the Parthenon during the Siege of Athens in 1687 by Francesco Morosini, the Doge of Venice [as a good Greek, I shake my fist at the Gods in anger]).

The Romans saw fit to either return to the Sumerian tradition or simply declaw Scorpius, as Libra once again became a set of Scales. It is fate that the pinchers of an arthropod would be returned to the type of covering for reptiles. With the first publications of Libra-friendly star groupings and names upon the demotion of the now more diminutive Scorpius, one might even argue that the pen is mightier than the claws.

When not being visually accosted by rock n’ roll advertisements for lawyers behind cheap bookcase backdrops offering beaucoup bucks for your injury settlements, the legal profession often seems quite dull and arcane in its own right (sorry, Ray). Libra is equally subdued in its presentation, offering no Messier Objects within its official borders and no other really “interesting” things observable through binoculars or small telescopes. Perhaps the most interesting aspect about the constellation itself is its identification as the only inanimate object of the Zodiac, the ring of Constellations that encompass the ecliptic, or the apparent path of the Sun throughout the year.

That is not, however, to say that there isn’t anything worth its weight in hydrogen residing within the Libra boundaries. If we perform a considerable zooming in just above Zubeneschamali (phew! That translates to the “northern claw,” just as its counterpart Zubenelgenubi translates to the “southern claw.” These names would indicate that Arab astronomers opted to use both Greek and Roman sources despite the obvious conflict in the star groupings), we can see (with very good scopes) the star Gliese 581 (shown below), home of one of the most populated planetary systems yet discovered (although it is important to remember that this number is only of those planets we can detect, which means those with significant gravitational influence on their stellar anchor). This is marked “1” in the opening image. To date, there are four detected stars around Gliese 581 (note that the star name is always first, followed by a letter designation), including Gliese 581 b, a Neptune-sized object with a 5.4 day orbit, c, a rocky Earth-like planet within the Gliese 581 Habitable Zone 1.5 times wider and 5 times more dense than our own, d, a planet 1/2 as massive as Uranus and still within in the Habitable Zone, and e, a planet 1.6 times as massive as Earth and the smallest yet identified. the star Gliese 581 not only represents a feat of mathematical prowess on the part of Terran researchers, but is also of specific interest because of the number of planets within its Habitable Zone, the region within which conditions are believed to be similar to our own (specifically, liquid water on the surface). Some even refer to this as the “Goldilocks Zone,” where it’s not too cold and not too hot. One might say that this region is where a proper balance of hot and cold is reached…

Gliese 581

Of all of the asterisms (groups of stars that are not designated as Constellations but that still have specific meaning. For instance, the Big Dipper is an asterism within the Constellation Ursa Major) that have jumped out at me during my binocular viewing adventures, the one marked by the “2” is perhaps the one that most stood out to my eyes. It is one of the most perfect isosceles triangles in the nighttime sky and is reasonably clear around it such that only this shape stands out in low-power optics. When it’s out, I always look for this small golden nugget residing within the Zubeneschamali-side of the scales, tipping the balance towards the arrival of the Summer constellations Scorpius and Sagittarius, the pair that mark the inside of our own galaxy and where a disproportionate number of Messier riches abound.

Some Light Science Reading. The Constellations: Sagittarius

As first appeared in the July 2009 edition of the Syracuse Astronomical Society newsletter The Astronomical Chronicle (PDF).

Image generated with Starry Night Pro 6,

The Constellations, for all of their mythological, mystical, and ceremonial significance throughout human history, are also the bases for much of the scientific discovery (the Zodiac was a calendar long before it was ever used to identify the other kind of dates, and the backdrop of the unchanging Heavens served as the guide against which the motions of the planets were first tracked) that fueled our understanding of the universe before Edwin Hubble first exposed its true vastness by identifying the “Andromeda Nebula” as, in fact, a galaxy far outside of the Milky Way. The constellations have also served in a far more pragmatic capacity throughout human history as seasonal sign posts, simply marking times and locations for those on land and sea. Perhaps the most famous example of this in American History is the use of the Big Dipper as the marker by freed slaves traveling North along the Underground Railroad. The song “Follow the Drinkin’ Gourd” is not simply a series of verses, but is instead a set of instructions, with the “Drinkin’ Gourd” being the Big Dipper, the most easily recognizable asterism in the Northern Hemisphere (amateur astronomer or not) and pointer (by drawing an arrow from Merak to Dubhe) to the North Star Polaris, itself the most famous star of the Little Dipper (also known as Ursa Minor), an otherwise somewhat unimpressive constellation (certainly not as prominent in the North as the Big Dipper or the Cassiopeia “W” and, therefore, not as useful a sign post).

The Little Dipper is not the most prominent constellation in the Night Sky, but it serves as an important terrestrial marker because it includes Polaris among its member stars. Just as the Big Dipper is a prominent asterism that directs you to the Little Dipper, the Summer constellation Scorpius (which has been recognized specifically as a scorpion by many cultures for several millennia) can draw you to a slightly less prominent constellation to its West that is a sign post to a far more impressive marker than Polaris.

Sagittarius is an astronomy instructor’s dream constellation, as it wraps up a number of interesting topics of discussion in one easy-to-find location. To begin, the Centaur, a half-human/half-horse hybrid, is the perfect bridge between the fantastical world of mythology in all of its seeming ridiculousness and, well, the shining example of what might even be ridiculously possible as scientists learn more about DNA and biological engineering (as of this past May, we now can make monkeys that glow in the dark. That’s right, in the dark).

Second, Sagittarius provides its viewer another shining example of the difference between a constellation and an asterism. A constellation is, simply, a specific grouping of stars that everyone has agreed are, in fact, assigned to that particular constellation. This circular definition was finally laid flat by the International Astronomical Union in its defining of Constellation Boundaries, solidifying star groupings that go as far back as antiquity and as far forward as 1763 (the exploration of the Southern Hemisphere was not limited to the land and the sea). An asterism is, simply, a convenient grouping of stars that are NOT one of the 88 Official Constellations, with some asterisms being only fragments of a full Constellation (such as the Big Dipper, the most famous asterism in the Constellation Ursa Major) and some asterisms composed of parts of multiple Constellations (such as the Summer Triangle, composed of the stars Deneb (Cygnus), Altair (Aquila), and Vega (Lyra). At our latitude (Syracuse and Tully), we cannot even see the entire Constellation of Sagittarius, but have an excellent view during the Summer of one of the most modern of conveniences in the form of a Tea Pot (see below). We may seem a little ridiculous pointing out the tea pot, short and stout, with its handle (on the left or to the West) and its spout (on the right or to the East) at Darling Hill on a dark night, but you will not forget this asterism after it jumps out at you the first time. An important thing to remember is that any grouping of stars in the sky that helps YOU find what you are looking for is as significant an asterism as one you might find in any book. If an otherwise unlabeled grouping jumps out at you that helps you find your place in the Night Sky, put those informal naming rights to good use.

Image generated with Starry Night Pro 6,

Third, the billowing steam from the spout of this tea pot marks a most important location to all 100 billion or more stars in our galaxy. The small darkened oval in the picture above marks the exact location of the center of the Milky Way galaxy (the tiny, fuzzy spec at its middle), meaning we are looking into the most dense region of the galaxy when we set our gazes at this region. Unfortunately, the city lights from Cortland wash the density of the Milky Way band at our South when we observe in Tully, although the full band of the Milky Way is prominent above us during the Summer.

Images from

Fourth, because we are looking into the heart of the Milky Way when we see the spout of the tea pot (as the image at right tries to show), we are looking into the densest region of stars we can see from Earth. As a result, this tea pot marks the location of a variety of Messier Objects and fainter nebulae far more numerous than even the largest variety pack the other Celestial Seasonings (pardon the tea pun) has to offer. The Trifid Nebula (M20), Lagoon Nebula (M8), Sagittarius Cluster (M22), Omega Nebula (M17), Black Swan Nebula (M18), M25, M23, M55, M54, M70, M28, M21, and M75 all reside within the Sagittarius boundary, while M6, M7, M16, and a host of other deep sky objects surround its borders in neighboring Scorpius, Ophiuchus, and Serpens Cauda.

When we observe during the Summer, I often recommend to new visitors with binoculars to simply point to the South, aim for the tea pot, and slowly scan. If your binoculars or telescope are anywhere near focused, you are guaranteed to find something within your field of view.

Mildly thirsty just thinking about it,