Evaluating The Friction Of Rotary Joints In Molecular Machines

Howard Lovy’s name came across my calendar (happy birthday!) and Josh Hall published a fresh post to “Where is my Flying Car?” – seems like a perfect time to post an everything-new-is-still-new-for-the-first-time-type update.

Published way back in 2017 in Molecular Systems Design & Engineering; reportedly one of the most-read Q3 2017 articles to boot. Also my first foray into arxiv territory for those limited in their journal access (arxiv.org/abs/1701.08202).

Tad Hogg*a Matthew S. Moses*b and Damian G. Allis*c

a. Institute for Molecular Manufacturing, Palo Alto, USA
b. Independent Consultant, Lafayette, USA
c. Department of Chemistry, Syracuse University, Syracuse, USA

Abstract: A computationally-efficient method for evaluating friction in molecular rotary bearings is presented. This method estimates drag from fluctuations in molecular dynamics simulations via the fluctuation–dissipation theorem. This is effective even for simulation times short compared to a bearing’s energy damping time and for rotation speeds comparable to or below typical thermal values. We apply this method to two molecular rotary bearings of similar size at 300 K: previously studied nested (9,9)/(14,14) double-walled carbon nanotubes and a hypothetical rotary joint consisting of single acetylenic bonds in a rigid diamondoid housing. The acetylenic joint has a rotational frictional drag coefficient of 2 × 10^-35 kg m2 s^-1. The friction for the nested nanotubes is 120 times larger, comparable to values reported by previous studies. This fluctuation-based method could evaluate dissipation in a variety of molecular systems with similarly rigid and symmetric bearings.

Mol. Syst. Des. Eng., 2017, 2, 235-252 (10.1039/C7ME00021A, direct link)

Solution Structure And Constrained Molecular Dynamics Study Of Vitamin B12 Conjugates Of The Anorectic Peptide PYY(3-36)

#50, published in ChemMedChem (11 (2016), 9, 1015-1020), DOI:cmdc.201600073.

The key to molecular dynamics simulations is recycling – specifically, going into a first project with enough organization to know how to use everything in the next study. While that first successful connectivity table, parameter assignment, and RESP charge generation for something as Frankenstein-esque as vitamin B12 is the north face of Everest, that next simulation is simply a matter of having atom codes in your PDB file standardized.

And, speaking of PDBs, article #50 has the added bonus of having its own entry in the Protein Databank as 2NA5 – quite a treat (to me, anyway).

And furthermore, this is the first of my publications to benefit from the Research Computing infrastructure on the Syracuse University campus – the throughput of calculations for future work is completely unprecedented in my history of resource access anywhere (the drop in storage prices is very real to some of us).

2016oct5_fig_4_b12_pyy_front_v2

Authors: Henry K.E., Kerwood D.J., Allis D.G., Workinger J.L., Bonaccorso R.L., Holz G.G., Roth C.L., Zubieta J., and Doyle R.P.

Abstract: Vitamin B12-peptide conjugates have considerable therapeutic potential through improved pharmacokinetic and/or pharmacodynamic properties imparted on the peptide upon covalent attachment to vitamin B12 (B12). There remains a lack of structural studies investigating the effects of B12 conjugation on peptide secondary structure. Determining the solution structure of a B12-peptide conjugate or conjugates and measuring functions of the conjugate(s) at the target peptide receptor may offer considerable insight concerning the future design of fully optimized conjugates. This methodology is especially useful in tandem with constrained molecular dynamics (MD) studies, such that predictions may be made about conjugates not yet synthesized. Focusing on two B12 conjugates of the anorectic peptide PYY(3-36), one of which was previously demonstrated to have improved food intake reduction compared with PYY(3-36), we performed NMR structural analyses and used the information to conduct MD simulations. The study provides rare structural insight into vitamin B12 conjugates and validates the fact that B12 can be conjugated to a peptide without markedly affecting peptide secondary structure.

Experimental And Theoretical Studies Of Tetramethoxy-p-benzoquinone: Infrared Spectra, Structural And Lithium Insertion Properties

Published earlier this year in RSC Advances (RSC Adv., 2013, 3, 19081-19096), a follow-up (for my part) to the study The Low-/Room-temperature Forms Of The Lithiated Salt Of 3,6-dihydroxy-2,5-dimethoxy-p-benzoquinone: A Combined Experimental And Dispersion-Corrected Density Functional Study in CrystEngComm last year. The theoretical section for this paper is a tour-de-force of Crystal09 solid-state optimizations, density functional and dispersion-correction dependence, and post-processing using Carlo Gotti’s TOPOND software. In brief, the combination of vibrational spectra, electochemical measurements, and solid-state density functional theory tests are used to predict the structure of the previously unknown lithiated tetramethoxy-p-benzoquinone structure based on the good-to-excellent agreement with two known TMQ crystal structures (the testing of density functionals and dispersion corrections being a very good survey of the pros and cons of the varied methods. If you were pondering an approach to follow to perform the same kind of theoretical analysis, the procedure set up by Gaetan and Christine in this paper is fully worth your consideration).

2013dec20_rscadvances

Gaetan Bonnard, Anne-Lise Barres, Yann Danten, Damian G. Allis, Olivier Mentre, Daniele Tomerini, Carlo Gatti, Ekaterina I. Izgorodina, Philippe Poizot and Christine Frayret*

In the search for low-polluting electrode materials for batteries, the use of redox-active organic compounds represents a promising alternative to conventional metal-based systems. In this article we report a combined experimental and theoretical study of tetramethoxy-p-benzoquinone (TMQ). In carbonate-based electrolytes, electrochemical behaviour of this compound is characterized by a reversible insertion process located at approximately 2.85 V vs. Li+/Li0. This relatively high potential reactivity, coupled with our effort to develop computational methodologies in the field of organic electrode materials, prompted us to complement these experimental data with theoretical studies performed using density functional theory (DFT). Single crystals of TMQ were synthesized and thoroughly characterized showing that this quinonic species crystallised in the P21/n space group. The experimental crystal structure of TMQ was then used to assess various DFT methods. The structural features and vibrational spectra were thus predicted by using as a whole five common density functionals (PBE, LDA, revPBE, PBEsol, B3PW91) with and without a semi-empirical correction to account for the van der Waals interactions using either Grimme’s (DFT-D2) or Tkatchenko-Scheffler (TS) scheme. The most reliable combination of the DFT functional and the explicit dispersion correction was chosen to study the Li-intercalated molecular crystal (LiTMQ) with the view of indentifying Li insertion sites. A very close agreement with the experiment was found for the average voltage by using the most stable relaxed hypothetical LiTMQ structure. Additionally, a comparison of vibrational spectra gained either for TMQ molecule and its dimer in gas phase or through periodic calculation was undertaken with respect to the experimentally measured infrared spectra. The topological features of the bonds were also investigated in conjunction with estimates of net atomic charges to gain insight into the effect of chemical bonding and intermolecular interaction on Li intercalation. Finally, pi-electron delocalization of both quinone and alkali salts of p-semiquinone were determined using the Harmonic Oscillator model of Aromaticity (HOMA) or aromatic fluctuation index (FLU) calculations.