CNYO Observing Log: The Winter Of Lovejoy – Green Lakes, Jamesville Beach, And New Moon Telescopes HQ – January 9 to 14, 2015

A re-post from the CNY Observers website (www.cnyo.org).

2015jan22_stephen_shaner_lovejoy_small

Caption: Comet Lovejoy imaged on January 10th by the ever-impressive CNY astrophotographer Stephen Shaner. From his CNYO Facebook Group post: Last night was the first in over three months it was clear enough to shoot, but it worked out well because Comet Lovejoy is at its peak. Here’s a quick process of about 40 minutes of exposures between 8-9 PM as it crossed the meridian. FOV is roughly three degrees. Distinct pale green coma in the eyepiece but unable to make out a tail or see it naked eye.

The 2015 skies are going to be full of comets. Well, at least six, to be exact, that will be either naked eye- or binocular-visible. That’s still quite a few to those keeping track! The amateur astronomy community has taken heroic efforts to scientifically identify and track new comets in the last, say, 400 years. The rise of, for instance, the Panoramic Survey Telescope & Rapid Response System (or panSTARRS) as a method for finding and tracking both comets and near-earth asteroids (or, lumped together, “objects,” for which you might hear the abbreviation “NEOs”) has greatly increased the number of accounted-for fuzzy objects in our fields of view (and provided us a giant leap in our existential risk assessment infrastructure to boot). Quite simply, we’ve more + better eyes on the skies, meaning we’re bound to continue to find more and more comets and asteroids. You can even subscribe to NASA twitter feeds that announce the passing-by of these hopefully passers-by (see @AsteroidWatch and @NasaNEOCam).

The discovery of NEOs may or may not qualify as a modern John Henry-ism, as amateur astronomers are still discovering objects at a decent pace thanks to improvements in their own optics and imaging equipment. Comet Lovejoy, C/2014 Q2, is one such recent example discovered by famed modern comet hunter Terry Lovejoy (who has five comets to his name already).

Comet Lovejoy And More In CNY

Comet Lovejoy has made the winter sky that much more enjoyable (and below freezing cold that much more bearable) by reaching peak brightness in the vicinity of the prominent winter constellations Taurus and Orion. Visible soon after sunset and before the “really cold” temperatures set in (after 10 p.m. or so), Lovejoy has been an easy target in low-power binoculars and visible without equipment in sufficiently dark skies. Now on its way out of the inner solar system, its bright tail will shrink and its wide coma (that gives it its “fuzziness”) will disappear as the increasingly distant Sun is unable to melt Lovejoy’s surface ice. Those of us who dared the cold, clear CNY skies these past few weeks were treated to excellent views, while the internet has been flooded with remarkable images of what some have described as the most photographed comet in history (a title that will likely be taken from it when a few other comets pass us by during warmer nights this year).

2015jan22_greenlakes_tiki

Caption: The tiki lounge at Green Lakes State Park, 9 January 2014.

The first observing session around Syracuse this year happened at Green Lakes State Park on January 9th. Bob Piekiel, one of CNY’s best known and most knowledgable amateur astronomers, had his Celestron NexStar 11 in the parking lot behind the main office, which was fortunately kept open for attendees hoping to warm up between views. To Bob’s C11 was added my Zhumell 25×100’s, providing less magnification but a wider field of view to take in more of the comet’s core, tail, and nearby stars.

2015jan22_lovejoyfromgreenlakes_small

Caption: A very prominent Orion and arrow-ed Comet Lovejoy from the Green Lakes parking lot. Photo by Kim Titus.

The Friday night skies were only partially on our side, offering a few short-lived views of the Orion Nebula and Lovejoy. Jupiter was just bright enough to burn through some of the cloud cover to our East, giving us slightly muddled but otherwise decent views of it and its four largest satellites for about 10 minutes. By our 9 p.m. pack-up and departure, the skies were even worse – which is always a good feeling for observers (knowing they didn’t miss a chance for any additional views by packing up early).

The night of Saturday, January 10th turned into a much better night for observing, offering a good opportunity for some long-exposure images to try to capture Lovejoy just past its luminous prime. The following image was taken from one of the parking lots at Jamesville Beach – the same spot where Larry Slosberg, Dan Williams and I observed the nova in Delphinus. Light pollution aside from the 30 second exposure, the brightest constellations are clearly visible and a fuzzy, bright green star is clearly visible in the full-sized image. Click on the image below for a larger, unlabeled version of the same.

2015jan22_jamesvillebeach_small

Caption: An array of Winter’s finest from Jamesville Beach, 10 January 2014, 8:00 p.m. Click on the image for a full and unlabeled version.

The imaging continued in Marcellus on January 10th, with Bob Piekiel producing a zoomed in view of Lovejoy.

2015jan22_lovejoyfrommarcellus_small

Caption: An unmistakable view of Comet Lovejoy. Image by Bob Piekiel.

As with all astronomical phenomena (excluding solar viewing, of course), the best views come from the darkest places. A third Lovejoy session was had up in West Monroe, NY on Wednesday, January 14th with fellow CNYO’er Ryan Goodson at New Moon Telescopes. Putting his 27” Dob to use, the green-tinted Lovejoy was almost bright enough to tan your retina. With dark skies and no observing line, we then attacked some subtler phenomena, including the Orion Nebula in Orion, the Eskimo Nebula in Gemini, and the Hubble Variable Nebula in Monoceros. The images below are our selfie with Lovejoy and the best of Winter, a snapshot near the zenith (with Jupiter prominent), and the Northern sky (click on the images for larger, unlabeled versions).

2015jan22_nmt1_small

Caption: Ryan and I pose for 30 sec, our fingers completely missing the location of Lovejoy (red arrow). Click for a larger view.

2015jan22_nmt2_small

Caption: Some of Winter’s finest from NMT HQ, including a prominent Jupiter just to the west of (and about to be devoured by) the constellation Leo. Click for a larger view.

2015jan22_nmt3_small

Caption: A view of NMT’s opening to the North, including Cassiopeia at left (the sideways “W”), the Big Dipper in the middle, and Jupiter at the right. Click for a larger view.

A Clothing Thought…

As we can all attest to, the nighttime temperatures this month have oscillated between bitterly cold and painfully cold. The pic of my Element’s thermometer at my midnight departure from West Monroe read -12 F (and the tire inflation warning light stayed on until I hit 81 South), yet with the exception of the tips of my toes, I wasn’t very bothered by the cold.

2015jan22_nmt_tempair

2015jan22_nmt_layersIt’s one of the cold realities of amateur astronomy – you never realize how cold it can get outside until you’re standing perfectly still at a metal eyepiece. The solution is as old as the sediment-grown hills – layers! The top half of my outfit for the evening is shown below, featuring six (yes, six) layers from turtleneck to final coat. My bottom half featured three layers that decorum permits me from showing here. For those wondering how the blood still flows below the belt, the answer is simple – buy yourself an outer layer two or three sizes larger than you usually wear. In my case, my outer coat’s a bit baggy and my outer pants are a very tightly-meshed pair of construction pants with a 40” waist (from a trip to DeJulio’s Army & Navy Store on Burnet Ave. in Syracuse).

And don’t worry about color coordinating. The nighttime is the right time for the fashion unconscious.

Some Light Science Reading. The Constellations: Draco

As first appeared in the May 2012 edition of the Syracuse Astronomical Society newsletter The Astronomical Chronicle.


Image generated with Starry Night Pro 6.

We return to our circumpolar constellation discussion begun with the Jan/Feb/March 2012 issue (our first “quarterly” report) by scaling up the Northern Horizon towards Draco the Dragon.

Draco, like all reptiles, is a bit on the dim side. Most of its constituent stars are in the 3 to 4.5 Magnitude range, making it an easy target in dark skies but a bit of a hunt near larger cities. If you’ve never looked for it before, it rivals Ursa Minor (the Little Dipper) in terms of “meh” apparent brightness in the sky (so it is far less pronounced than the Big Dipper or Cassiopeia, the two most prominent Constellations in this part of the sky).

Your best bet for identifying the stars in Draco may be to start right at the head and work your way down (and around, then over, then up, then way over the other way). One of my recent discoveries is that the head of Draco is, itself, a noted asterism (or noteworthy arrangement of stars that are not of the proper 88 Constellations) referred to as “The Lozenge” (“1” in the image above). I had been subconsciously thinking of Monty Python references to throw into this article and realized that saying “The Lozenge” several in a low John Cleese voice a la “The Larch” just about does it. The head of Draco is made from the brightest stars in the Constellation and does make for a reasonably easy target, as it sits between the two bright stars of the Little Dipper’s bowl (“2” In the image at right) and Vega (“3”), the ridiculously bright star making its triumphant return to Spring skies (if you’re at Darling Hill near sunset, you will see Vega as one of the first stars to appear above the Eastern Horizon well before it gets really dark). For those of you familiar with the Keystone (another famed asterism) that makes up the torso of Hercules (“4” in the image above), simply drive your eyes to the left-ish during the early night.

The historical origins of Draco as a lizard of any kind are localized to the Mediterranean, and these origins go back far enough that Draco is one of the Almagest’s Original 48. The Greeks, and so the Romans, saw Draco as a Dragon (or, at least, lizard) of generally ill repute. Draco was seen by the Greeks as a guard of Hesperides’ golden apples and/or a guard (or target, depending on how you read the sentence) of Jason’s mythical golden fleece. The Romans saw Draco as the remains of the dragon killed by their goddess Minerva. It is perhaps fitting that, if you imagine Ursa Minor (the Little Dipper) as an ax on a questionably straight handle, then Draco is precariously on the celestial chopping block preparing to be cleft in twain.

The body of Draco is a healthy mix of single and double stars. In the boring single star category are Giausar, Thuban, and Nodus I. The double star list includes Edasich, Aldhibain, Altais, Rastaban (“eh mahn!”), Eltanin, and Grumium.

Thuban is one star in Draco to spend a bit of time on. In fact, it’s one to spend several thousand years on. As late as 2700 B.C.E., Thuban held the place of Polaris as our North Star. The Earth may seem reasonably unchanging with respect to the seemingly unchanging arrangement of stars of our 100-year-ish lifetimes, but on the geological or cosmological timescales our Earth is as dynamic and fast-moving as that famed clay dreidel. The 26,000-year cycle we know as the precession of the equinoxes (shown above) is one of those processes that requires nearly the entire history of what we know as civilization to mark significant timespans for, but it is reported in several places that Thuban was of significance to the Egyptians in their building of the pyramids over 5 millennia ago (I would be happy to report that Thuban was the North Star that the main shaft of the great pyramid of Cheops was aligned to, but I’ve found conflicting reports online from otherwise reputable locations, so will simply report that the Egyptians very likely knew that this star appeared to move far less over the course of the night than any other and, therefore, held it with great regard).

For those observing at Darling Hill or anywhere south of Syracuse, Draco is a tough reptile to sustain one’s astronomical appetite on. At least two comets are currently passing through Draco at the moment. One, LINEAR (C/2011 F1), is just off the Spindle Galaxy M102 (we’ll come back to that) and, at 3 a.u. and closing, may improve beyond its apparent magnitude of 12.5. Draco also hosts Garradd (C/2008 P1) far beyond its tail star. At an apparent magnitude of 21.30, you have absolutely NO chance of seeing this comet from Darling Hill.

Draco is regrettably light on deep sky objects as well. The local color (at about 3400 light year) is provided by NGC 6543, known as the Cat’s Eye Nebula (above). This is regarded as one of the most structurally complex nebulae in the Night Sky, although this complexity is only revealed through astrophotographic studies. NGC 5866 (below), also known as the Spindle Galaxy (which is very likely Messier 102, although some debate exists), is one of the great photographic sights in astronomy to my eyes. This edge-on galaxy view produces amazing density of material and spindly, fibrous clouds of dust and stars along the plane of the galaxy and a bright glow of stars all around this dense, dark line.

Now, the long curving body of Draco and its positions near the North Star does afford it one benefit in the Northern Horizon. Satellites! There are many bright (brighter than magnitude 4.0) satellites that follow paths over the Earth’s poles, meaning those Constellations near the North and South poles are constantly getting pierced by manmade weather, communications, and “other” satellites. Simply letting my copy of Starry Night Pro go at high-speed with Draco at the center reveals over a dozen of these satellites over the course of just a few hours.

Some Light Science Reading. The Constellations: Ursa Minor

As first appeared in the January/February/March 2012 edition (yeah, I know) of the Syracuse Astronomical Society newsletter The Astronomical Chronicle (PDF) and, I am proud to say, soon to be included in an edition of the Mohawk Valley Astronomical Society (MVAS) newsletter, Telescopic Topics.

Image generated with Starry Night Pro 6.

[Author’s Note: A tradition owing to Dr. Stu Forster during his many years as President and Editor, the Syracuse Astronomical Society (www.syracuse-astro.org) features (at least) one Constellation in each edition of its near-monthly newsletter, the Astronomical Chronicle.]

The Constellation discussion for this year is going to take a bit of a turn.

As part of the 2011 Syracuse Astronomical Society (SAS) lectures presented at Liverpool Public Library and Beaver Lake Nature Center, I spent a few minutes covering (briefly) how to navigate the Night Sky. By way of introduction, I described how one of my graduate advisors, Dr. Bruce Hudson, began scribbling furiously a long string of quantum mechanical equations about something-or-other that devoured the lion’s share of a whiteboard. Upon mentioning that I had no idea how he kept such information at the ready in his noggin, he replied “Try doing it 50 years.”

It is, in my humble opinion, useless to present the 88 Constellations to a general, new-to-observing audience in an hour and expect anyone to remember information that I, as el presidente, am still trying to digest after several years (a problem made all the more infuriating by the fact that this information hasn’t changed in several millennia). The problem that I and others at this latitude have is that the vast majority of the Night Sky changes throughout the year and, given that weather conditions often result in short spells of clear sky and long patches of overcast conditions, there is often little opportunity for “mental reinforcement” to help commit the lesser (well, at least smaller or dimmer) Constellations to memory.

The solution I discussed in the lectures was to play the “observability odds” and focus on learning those Constellations that you can, given clear skies, see all year long from Central New York (CNY). This group of Constellations are defined as “circumpolar” and, by their location about the axis of rotation of the Earth, never dip below the West/Northwest Horizon (or, at least, they do not entirely disappear over the course of a long evening of observing unless you’re surrounded by considerable foliage).

The set of images at the end of this article will show you how to kill six birds with one long, clear turn of the stone we call Earth. The small family of six Constellations I’ve included in this discussion are (1) Ursa Major (although, here, I’m only including the Big Dipper asterism for ease of identification. This is obviously a better target for new observers), (2) Draco the Dragon (a long and winding Constellation that is curled around the Little Dipper), (3) Cepheus, the late-late-late King of Ethiopia (as much as I dislike the use of simple geometric objects to identify groups of stars (because, well, they’re all points on imaginary polygons), the odd pentagon does stand out at night), (4) Cassiopeia (Jonathan Winters’ Big “W” and, thanks to Earth’s rotation axis, also sometimes a “3,” or an “M,” or an “E,” but obvious upon first being pointed out), and (5) Camelopardalis the giraffe (one of the last Constellations you might otherwise learn. Also one of the last Northern Constellations marked as such, in this case in 1612 by Petrus Plancius. You might even have a little trouble picking this one out. The Greeks (for instance, and in their infinite wisdom (I note with a 100% Greek heritage)) did not even bother to identify anything in this part of the sky as being of significance given how relatively dim the stars are). This list leaves number six, Ursa Minor, which I denote in the images as “0” as your celestial clock face base of operations.

Ursa Minor, or the Little Dipper (below, shown at its approximate orientation at 10:00 p.m. on March 23rd), is a nondescript Constellation that requires a bit of searching to find in the Night Sky. Polaris, its last handle star (2.0 mag.), is made easier to find by the fact that it is in a very dark, very nondescript piece of sky (it is identifiable simply by being where it is). Its cup-edge stars Pherkad (3.0 mag.) and Kochab (2.1 mag.) are a bit brighter and also in a dull region of the sky. The four remaining stars are the ones that become more visible as you mark their location with your scanning eyes. These four are made a bit more difficult to find from Darling Hill Observatory (home of the SAS) because of the bright light bulb directly at our Northern Horizon that is downtown Syracuse.

A possible trick to finding Polaris for the new-at-observing is to use the two most prominent Constellations in the North, Ursa Major (again, using the Big Dipper asterism here) and Cassiopeia. Finding the bowl of the Big Dipper and imagining a clock face, find Cassiopeia at nearly 7 o’clock to the edge-most bowl stars, then aim for the location where you’d expect those hands to be riveted (as shown below). Again, you’ll find a single bright-ish (“eh”) star at this location.

Having sufficiently talked down the significance of Polaris as a celestial observable, this otherwise nondescript star has something other nondescript stars have. To quote “Glorious John” Dryden:

Rude as their ships were navigated then;
No useful compass, no meridian known;
Coasting they kept the land within their ken;
And knew no North but when the Pole star shown.

Or, as William Tyler Olcott sums more quickly in his book “Star Lore,” Polaris is “the most practically useful star in the heavens.” Modern civilizations know Polaris as the star around which the Earth appears to spin, making it the most stably-placed object in the Night Sky over any reasonable span of human existence (a qualification I use in this article to avoid a discussion of the fascinating but “not relevant to learning the Night Sky right now” Precession of the Equinoxes).

The apparent constancy of all of the star positions (and Constellations) in the Night Sky relative to one another is, of course, due to stellar parallax, the celestial equivalent of the more familiar terrestrial parallax. If you’ve ever been the passenger on a long drive, you’ve borne witness to the trees along the road moving at a tremendous clip while the distant trees slide far more slowly through your field of view (that is, stay in your field of view while the trees along the road fall far behind you over the same amount of time). Polaris provides an ideal example of this same phenomenon on a celestial scale by its apparent immovability in the Night Sky despite the best efforts of Earth as it reaches nearly 300,000,000 kilometers of physical separation from its starting point every six months. The two images below demonstrate the phenomenon…

Your Green Laser Along Earth’s Rotation Axis (Pointing UP From The North Pole), One Beam Every Three Months, Separated By (At Best) 2 Astronomical Units (a.u.), Looking At A “Close Object” With A Large Apparent Motion Against The “Background”

Your Green Laser Along Earth’s Rotation Axis (Pointing UP From The North Pole), One Beam Every Three Months, Marking A Position 431 Light Years Away (Looking At A “Distant Object”) And A Small Apparent Motion Against The “Background” (All NOT To Scale)

At above-left you see a small slightly-sideways model of Earth’s motion around the Sun (at points being marked about every three months), with the left-most and right-most positions separated by two astronomical units, the astronomical unit being the mean distance between the Sun and Earth (bearing in mind Kepler‘s Elliptical description of our orbits), a value of about 150 million kilometers. To objects in our own Solar System or even a few nearby stars, this large change in position is enough to clearly see those objects that are nearby move more than the “background” of more distant objects (you could do this at home with a decent scope and excellent note-taking skills, possibly reproducing the 1838 work of Friedrich Bessel in his measurement of the parallax of 61 Cygni). In our case, the more distant objects are the stars far from our vantage point (think of “stars” as “trees” and the same driving analogy works, although now you’re driving around a circular track and paying your passenger to always look North). Polaris, as measured by the Hipparcos satellite (using parallax to exacting detail), determined that Polaris is 431 light years away, a distance of 27.5 million a.u.! And this is a CLOSE star considering the 100,000 light year diameter of the Milky Way. At this distance, if the four green laser pointer beams were a meter long, their separation in Earth’s orbit would be a small enough measuring distance to map out the contents of a single-celled organism in exacting detail. My ability to draw a proper parallax-like image to show this is limited by the pixels on my screen being gigantic compared to the apparent change in position in this crude image (so the above image is decidedly NOT to scale).

All of this discussion above is basically to convince you that, when you look up in the Night Sky, Polaris will effectively NOT move to the best of your ability to observe it, making it a best starting point for your Constellation memorization adventure.

Well, Polaris will NOT move provided you always observe from the same latitude on the Earth’s Surface. The last piece of the puzzle to put ourselves into proper perspective comes from a zoom-in of our Earth, shown below. You’ll see that our North Pole, appropriately placed at 90o North Latitude, is aligned nearly exactly with Polaris (again, for our purposes, this approximation is fine). What does that mean? It means that, with the right low Horizon (or high hill), nearly ALL of the Northern Constellations are circumpolar at the North Pole! Think of the memorization mess! Alternatively, at the equator (0o), the Night Sky is, effectively, constantly in motion (this should make you truly appreciate the navigational and astronomical skills of the Polynesians in their spread across the South Pacific islands).

As you walk from the Equator to the North Pole, moving from 0o to 90o North Latitude, the North Star appears to get higher and higher in the Night Sky. By this, the angle of Polaris above the Horizon (its altitude) is equal to our latitude (so when you know one (say, by getting your latitude and longitude from google maps or the like), you know the other. This is one of the great “then explain this, dummy!” rhetorical smack-downs to members of the Flat Earth Society). In our case, Polaris is about 40o above our horizon. Personally, I think 40o North Latitude is a perfectly reasonable place to begin Constellation memorization. Not too many, not to few. And, as is the common theme we’ll explore this year, once you have a reliable base of celestial operations, learning the remaining Constellations becomes a significantly easier (but still Herculean) task.

The Counterclockwise Circumpolar Map

Your Northern Horizon from CNY will, clear skies permitting, ALWAYS look something like the following, with the Constellation closest to the N/NW Horizon labeled as follows (0 = Ursa Minor, the Little Dipper. * = Polaris, which appears to not move (to a coarse approximation)):


A. Big Dipper (1, technically, Ursa Major, but the Big Dipper is smaller and more obvious)


B. Draco (2, aim for the dragon’s head. If the Big Dipper is N/NE, an easy find)


C. Cepheus – 3, a crazy house standing upright, just right of a bright “E”


D. Cassiopeia – 4, the big “W,” at the horizon an “E” (or its canonical chair)


E. Camelopardalis (?!) – 5, the back-end of a giraffe(with Cassiopeia as a “Big W,” the giraffe is drinking from the tipped bowl of the Big Dipper).

NOTE: The Earth’s rotation makes 1-to-5 move counterclockwise! Fresh Constellations over your Eastern Horizon, stale ones disappear at your West.

Happy Hunting – Damian