“OrtVc1 failed #1.” Workaround In Gaussian09; Warning About (Pre-)Resonance Raman Spectra In GaussView 4/5

And Happy New Year.

Two issues (one easily addressable, one only by external workaround) related to the prediction of Raman intensities in Gaussian09 – for which there’s next-to-nothing online to address either of them (likely because they don’t come up that often).

OrtVc1 failed #1.

In simulating the Raman spectra of very long (> C60) polyenes as a continuance of work related to the infinite polyacetylene case (see this post for details: Bond Alternation In Infinite Periodic Polyacetylene: Dynamical Treatment Of The Anharmonic Potential), I reached a length and basis set for which Gaussian provides the following output and error:

Continue reading ““OrtVc1 failed #1.” Workaround In Gaussian09; Warning About (Pre-)Resonance Raman Spectra In GaussView 4/5”

The EMSL Basis Set Exchange 6-31G, 6-31G(d), And 6-31G(d,p) Gaussian-Type Basis Set For CRYSTAL88/92/95/98/03/06/09/14/etc. – Conversion, Validation With Gaussian09, And Discussion

Jump to the basis sets and downloadable files here: files, 6-31G, 6-31Gd, 6-31Gdp.

If you use these results: Please drop me a line (damian@somewhereville.com), just to keep track of where this does some good. That said, you should most certainly cite the EMSL and Basis Set references at the bottom of this page.

It’s a fair bet that Sir John Pople would be the world’s most cited researcher by leaps and bounds if people properly cited their use of the basis sets he helped develop.

The full 6-31G, 6-31G(d), and 6-31G(d,p) series (yes, adding 6-31G(d) is a bit of a cheat in this list) from the EMSL Basis Set Exchange is presented here in the interest of giving the general CRYSTALXX (that’s CRYSTAL88, CRYSTAL92, CRYSTAL95, CRYSTAL98, CRYSTAL03, CRYSTAL06, CRYSTAL09, now CRYSTAL14 – providing the names here for those who might be searching by version) user a “standard set” of basis sets that are, for the most part, the same sets one does / could employ in other quantum chemistry codes (with my specific interest being the use and comparison of Gaussian and GAMESS-US in their “molecular” (non-solid-state) implementations). Members of the CRYSTAL developer team provide a number of basis sets for use with the software. While this is good, I will admit that I cannot explain why the developers chose not to include three of the four most famous basis sets in all of (all of) computational chemistry – 3-21G (upcoming), 6-31G(d,p) (presented here), and 6-311G(d,p) (also upcoming).

Continue reading “The EMSL Basis Set Exchange 6-31G, 6-31G(d), And 6-31G(d,p) Gaussian-Type Basis Set For CRYSTAL88/92/95/98/03/06/09/14/etc. – Conversion, Validation With Gaussian09, And Discussion”

For The Windows-Specific: Sed For Windows And A .bat File To Get Gaussian09 Files Working With aClimax

Provided you’ve installed Sed For Windows and know its proper path, the .bat file below should make all the modifications you need to your Gaussian09 .out files (in differently-named files at that) to get them properly loading in aClimax (see the previous post for all the details). A few simple steps:

1. Download and install Sed for Windows. Currently available at: gnuwin32.sourceforge.net/packages/sed.htm

2. Find its location on your machine. Under XP (where I’m using aClimax), this should be C:\Program Files\GnuWin32\bin

Continue reading “For The Windows-Specific: Sed For Windows And A .bat File To Get Gaussian09 Files Working With aClimax”

Stupid-Simple (*nix-Specific) Sed Scripts To Get (All Current) Gaussian09 Output Files Working With aClimax

The following three snippets of Gaussian output are for an optimization and normal mode analysis of simple olde methane (CH4).

...
 ******************************************
 Gaussian 03:  EM64L-G03RevE.01 11-Sep-2007
                31-Aug-2014 
 ******************************************
...
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                     T                      T                      T
 Frequencies --  1356.0070              1356.0070              1356.0070
 Red. masses --     1.1789                 1.1789                 1.1789
 Frc consts  --     1.2771                 1.2771                 1.2771
 IR Inten    --    14.1122                14.1122                14.1122
 Atom AN      X      Y      Z        X      Y      Z        X      Y      Z
   1   1     0.02  -0.42   0.43    -0.34  -0.13  -0.08    -0.36  -0.23  -0.23
   2   6     0.00   0.08  -0.09     0.00   0.09   0.08     0.12   0.00   0.00
...
 -------------------
 - Thermochemistry -
 -------------------
 Temperature   298.150 Kelvin.  Pressure   1.00000 Atm.
 Atom  1 has atomic number  1 and mass   1.00783
...

Continue reading “Stupid-Simple (*nix-Specific) Sed Scripts To Get (All Current) Gaussian09 Output Files Working With aClimax”

Generating Molecular Orbitals (And Visualizing Assorted Properties) With The Gaussian09 cubegen Utility

To begin, this post owes its existence to the efforts of Dr. Douglas Fox at Gaussian, Inc., who provided me with an alternative explanation of how the cubegen utility works. After much wailing and gnashing of teeth, I intend on taking Dr. Fox’s advice and asking Gaussian Support for assistance earlier in my endeavors. What follows below, I hope, will save you some significant frustration (and, given how little there is online that really describes the extra workings of cubegen in a clear and example’ed way, it is my expectation that this page appeared early in your search list).

What I wanted out of cubegen that I couldn’t figure out how to get:

The situation was simple. I wanted my molecule centered and bound within an arbitrarily-sized box (X,Z,Y) for making images and doing additional post-processing. Specifically, I wanted to be able to take many different molecules (from hydrogen gas to big biomolecules) defined within the same-sized box for layering and presentation (different boxes for each, but all the same size).

Continue reading “Generating Molecular Orbitals (And Visualizing Assorted Properties) With The Gaussian09 cubegen Utility”