Solution Structure And Constrained Molecular Dynamics Study Of Vitamin B12 Conjugates Of The Anorectic Peptide PYY(3-36)

#50, published in ChemMedChem (11 (2016), 9, 1015-1020), DOI:cmdc.201600073.

The key to molecular dynamics simulations is recycling – specifically, going into a first project with enough organization to know how to use everything in the next study. While that first successful connectivity table, parameter assignment, and RESP charge generation for something as Frankenstein-esque as vitamin B12 is the north face of Everest, that next simulation is simply a matter of having atom codes in your PDB file standardized.

And, speaking of PDBs, article #50 has the added bonus of having its own entry in the Protein Databank as 2NA5 – quite a treat (to me, anyway).

And furthermore, this is the first of my publications to benefit from the Research Computing infrastructure on the Syracuse University campus – the throughput of calculations for future work is completely unprecedented in my history of resource access anywhere (the drop in storage prices is very real to some of us).


Authors: Henry K.E., Kerwood D.J., Allis D.G., Workinger J.L., Bonaccorso R.L., Holz G.G., Roth C.L., Zubieta J., and Doyle R.P.

Abstract: Vitamin B12–peptide conjugates have considerable therapeutic potential through improved pharmacokinetic and/or pharmacodynamic properties imparted on the peptide upon covalent attachment to vitamin B12 (B12). There remains a lack of structural studies investigating the effects of B12 conjugation on peptide secondary structure. Determining the solution structure of a B12–peptide conjugate or conjugates and measuring functions of the conjugate(s) at the target peptide receptor may offer considerable insight concerning the future design of fully optimized conjugates. This methodology is especially useful in tandem with constrained molecular dynamics (MD) studies, such that predictions may be made about conjugates not yet synthesized. Focusing on two B12 conjugates of the anorectic peptide PYY(3–36), one of which was previously demonstrated to have improved food intake reduction compared with PYY(3–36), we performed NMR structural analyses and used the information to conduct MD simulations. The study provides rare structural insight into vitamin B12 conjugates and validates the fact that B12 can be conjugated to a peptide without markedly affecting peptide secondary structure.

Experimental And Theoretical Studies Of Tetramethoxy-p-benzoquinone: Infrared Spectra, Structural And Lithium Insertion Properties

Published earlier this year in RSC Advances (RSC Adv., 2013, 3, 19081-19096), a follow-up (for my part) to the study The Low-/Room-temperature Forms Of The Lithiated Salt Of 3,6-dihydroxy-2,5-dimethoxy-p-benzoquinone: A Combined Experimental And Dispersion-Corrected Density Functional Study in CrystEngComm last year. The theoretical section for this paper is a tour-de-force of Crystal09 solid-state optimizations, density functional and dispersion-correction dependence, and post-processing using Carlo Gotti’s TOPOND software. In brief, the combination of vibrational spectra, electochemical measurements, and solid-state density functional theory tests are used to predict the structure of the previously unknown lithiated tetramethoxy-p-benzoquinone structure based on the good-to-excellent agreement with two known TMQ crystal structures (the testing of density functionals and dispersion corrections being a very good survey of the pros and cons of the varied methods. If you were pondering an approach to follow to perform the same kind of theoretical analysis, the procedure set up by Gaëtan and Christine in this paper is fully worth your consideration).


Gaëtan Bonnard, Anne-Lise Barrès, Yann Danten, Damian G. Allis, Olivier Mentré, Daniele Tomerini, Carlo Gatti, Ekaterina I. Izgorodina, Philippe Poizot and Christine Frayret*

In the search for low-polluting electrode materials for batteries, the use of redox-active organic compounds represents a promising alternative to conventional metal-based systems. In this article we report a combined experimental and theoretical study of tetramethoxy-p-benzoquinone (TMQ). In carbonate-based electrolytes, electrochemical behaviour of this compound is characterized by a reversible insertion process located at approximately 2.85 V vs. Li+/Li0. This relatively high potential reactivity, coupled with our effort to develop computational methodologies in the field of organic electrode materials, prompted us to complement these experimental data with theoretical studies performed using density functional theory (DFT). Single crystals of TMQ were synthesized and thoroughly characterized showing that this quinonic species crystallised in the P21/n space group. The experimental crystal structure of TMQ was then used to assess various DFT methods. The structural features and vibrational spectra were thus predicted by using as a whole five common density functionals (PBE, LDA, revPBE, PBEsol, B3PW91) with and without a semi-empirical correction to account for the van der Waals interactions using either Grimme’s (DFT-D2) or Tkatchenko–Scheffler (TS) scheme. The most reliable combination of the DFT functional and the explicit dispersion correction was chosen to study the Li-intercalated molecular crystal (LiTMQ) with the view of indentifying Li insertion sites. A very close agreement with the experiment was found for the average voltage by using the most stable relaxed hypothetical LiTMQ structure. Additionally, a comparison of vibrational spectra gained either for TMQ molecule and its dimer in gas phase or through periodic calculation was undertaken with respect to the experimentally measured infrared spectra. The topological features of the bonds were also investigated in conjunction with estimates of net atomic charges to gain insight into the effect of chemical bonding and intermolecular interaction on Li intercalation. Finally, π-electron delocalization of both quinone and alkali salts of p-semiquinone were determined using the Harmonic Oscillator model of Aromaticity (HOMA) or aromatic fluctuation index (FLU) calculations.

Commensurate Urea Inclusion Crystals With The Guest (E,E)‐1,4-Diiodo-1,3-Butadiene

Published in Crystal Growth & Design (Cryst. Growth Des., 2013, 13 (9), pp. 3852–3855) earlier this year. The theory work is less impressive than the successful crystal growth, with initial solid-state efforts in Crystal09 only very recently now producing good results (leaving the molecular calculations to Gaussian09 in this paper). The procedure leading to the observed crystal structure of this inclusion complex is a significant step in the direction of testing the theory proposed in Bond Alternation In Infinite Periodic Polyacetylene: Dynamical Treatment Of The Anharmonic Potential published earlier this year in J. Mol. Struct.


Caption: Two views along the ba and ca crystal axes of the (E,E)‐1,4-Diiodo-1,3-Butadiene : Urea Inclusion Complex.

Amanda F. Lashua, Tiffany M. Smith, Hegui Hu, Lihui Wei, Damian G. Allis, Michael B. Sponsler, and Bruce S. Hudson

Abstract: The urea inclusion compound (UIC) with (E,E)-1,4-diiodo-1,3-butadiene (DIBD) as a guest (DIBD:UIC) has been prepared and crystallographically characterized at 90 and 298 K as a rare example of a commensurate, fully ordered UIC. The crystal shows nearly hexagonal channels in the monoclinic space group P21/n. The DIBD guest molecules are arranged end-to-end with the nonbonding iodine atoms in the van der Waals contact. The guest structure is compared with that for DIBD at 90 K and with computations for the periodic UIC and isolated DIBD molecule.